

TORQUE®

Administrator Guide

version 3.0.2

TORQUE Admin Manual
version 3.0.2

Legal Notices

Preface
Documentation Overview
Introduction
Glossary

1.0 Overview
1.1 Installation
1.2 Initialize/Configure TORQUE on the Server (pbs_server)
1.3 Advanced Configuration
1.4 Manual Setup of Initial Server Configuration
1.5 Server Node File Configuration
1.6 Testing Server Configuration
1.7 TORQUE on NUMA Systems
1.8 TORQUE Multi-MOM

2.0 Submitting and Managing Jobs
2.1 Job Submission
2.2 Monitoring Jobs
2.3 Canceling Jobs
2.4 Job Preemption
2.5 Keeping Completed Jobs
2.6 Job Checkpoint and Restart
2.7 Job Exit Status
2.8 Service Jobs

3.0 Managing Nodes
3.1 Adding Node
3.2 Configuring Node Properties
3.3 Changing Node State
3.4 Host Security
3.5 Linux Cpuset Support
3.6 Scheduling Cores
3.7 Scheduling GPUs

4.0 Setting Server Policies
4.1 Queue Configuration
4.2 Server High Availability

5.0 Interfacing with a Scheduler
5.1 Integrating Schedulers for TORQUE

6.0 Configuring Data Management
6.1 SCP/RCP Setup
6.2 NFS and Other Networked Filesystems
6.3 File Stage-In/Stage-Out

7.0 Interfacing with Message Passing
7.1 MPI (Message Passing Interface) Support

8.0 Managing Resources
8.1 Monitoring Resources

9.0 Accounting
9.1 Accounting Records

10.0 Logging
10.1 Job Logging

11.0 TroubleShooting
11.1 Troubleshooting
11.2 Compute Node Health Check
11.3 Debugging

Appendices
Appendix A: Commands Overview

Client Commands
momctl
pbsdsh
pbsnodes
qalter
qchkpt
qdel
qhold
qmgr
qrerun
qrls
qrun
qsig
qstat
qsub
qterm
tracejob

Server Commands
pbs_mom
pbs_server
pbs_track

Appendix B: Server Parameters
Appendix C: MOM Configuration
Appendix D: Error Codes and Diagnostics
Appendix E: Considerations Before Upgrading
Appendix F: Large Cluster Considerations
Appendix G: Prologue and Epilogue Scripts
Appendix H: Running Multiple TORQUE Servers and Moms on the Same Node
Appendix I: Security Overview
Appendix J: Submit Filter (aka qsub Wrapper)
Appendix K: torque.cfg File
Appendix L: TORQUE Quick Start Guide

Changelog

Legal Notices

Copyright

© 2011 Adaptive Computing Enterprises, Inc. All rights reserved. Distribution of this document for
commercial purposes in either hard or soft copy form is strictly prohibited without prior written consent from
Adaptive Computing Enterprises, Inc.

Trademarks

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Cluster Manager, Moab
Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive Computing
products are either registered trademarks or trademarks of Adaptive Computing Enterprises, Inc. The
Adaptive Computing logo and the Cluster Resources logo are trademarks of Adaptive Computing Enterprises,
Inc. All other company and product names may be trademarks of their respective companies.

Acknowledgments

TORQUE includes software developed by NASA Ames Research Center, Lawrence Livermore National
Laboratory, and Veridian Information Solutions, Inc. Visit www.OpenPBS.org for OpenPBS software support,
products and information. TORQUE is neither endorsed by nor affiliated with Altair Grid Solutions, Inc.

TORQUE Administrator Guide Overview
Advanced TORQUE Administration is a video tutorial of a session offered at Moab Con that
offers further details on advanced TORQUE administration.

This collection of documentation for TORQUE resource manager is intended as a reference for both users and
system administrators.

The 1.0 Overview section provides the details for installation and initialization, advanced configuration
options, and (optional) qmgr options necessary to get the system up and running. System Testing is also
covered.

The 2.0 Submitting and Managing Jobs section covers different actions applicable to jobs. The first section,
2.1 Job Submission, details how to submit a job and request resources (nodes, software licenses, and so
forth) and provides several examples. Other actions include monitoring, canceling, preemption, and keeping
completed jobs.

The 3.0 Managing Nodes section covers administrator tasks relating to nodes, which includes the following:
adding nodes, changing node properties, and identifying state. Also an explanation of how to configure
restricted user access to nodes is covered in section 3.4 Host Security.

The 4.0 Setting Server Policies section details server side configurations of queue and high availability.

The 5.0 Interfacing with a Scheduler section offers information about using the native scheduler versus an
advanced scheduler.

The 6.0 Configuring Data Management section deals with issues of data management. For non-network file
systems, the SCP/RCP Setup section details setting up SSH keys and nodes to automate transferring data.
The NFS and Other Networked File Systems section covers configuration for these file systems. This chapter
also addresses the use of File Stage-In/Stage-Out using the stagein and stageout directives of the qsub
command.

The 7.0 Interfacing with Message Passing section offers details supporting MPI (Message Passing Interface).

The 8.0 Managing Resources section covers configuration, utilization, and states of resources.

The 9.0 Accounting section explains how jobs are tracked by TORQUE for accounting purposes.

The 10.0 Troubleshooting section is a troubleshooting guide that offers help with general problems; it
includes an FAQ (Frequently Asked Questions) list and instructions for how to set up and use compute node
checks and how to debug TORQUE.

The numerous appendices provide tables of commands, parameters, configuration options, error codes, the
Quick Start Guide, and so forth.

A. Commands Overview
B. Server Parameters
C. MOM Configuration
D. Error Codes and Diagnostics
E. Considerations Before Upgrading
F. Large Cluster Considerations
G. Prologue and Epilogue Scripts
H. Running Multiple TORQUE Servers and Moms on the Same Node
I. Security Overview
J. Submit Filter (aka qsub Wrapper)
K. torque.cfg File

http://www.clusterresources.com/moabcon/2008/videos/Advanced%20TORQUE%20Administration.php

Introduction

What is a Resource Manager?

While TORQUE has a built-in scheduler, pbs_sched, it is typically used solely as a resource manager with a
scheduler making requests to it. Resources managers provide the low-level functionality to start, hold,
cancel, and monitor jobs. Without these capabilities, a scheduler alone can not control jobs.

What are Batch Systems?

While TORQUE is flexible enough to handle scheduling a conference room, it is primarily used in batch
systems. Batch systems are a collection of computers and other resources (networks, storage systems,
license servers, and so forth) that operate under the notion that the whole is greater than the sum of the
parts. Some batch systems consist of just a handful of machines running single-processor jobs, minimally
managed by the users themselves. Other systems have thousands and thousands of machines executing
users' jobs simultaneously while tracking software licenses and access to hardware equipment and storage
systems.

Pooling resources in a batch system typically reduces technical administration of resources while offering a
uniform view to users. Once configured properly, batch systems abstract away many of the details involved
with running and managing jobs, allowing higher resource utilization. For example, users typically only need
to specify the minimal constraints of a job and do not need to know the individual machine names of each
host on which they are running. With this uniform abstracted view, batch systems can execute thousands and
thousands of jobs simultaneously.

Batch systems are comprised of four different components: (1) Master Node, (2) Submit/Interactive Nodes,
(3) Compute Nodes, and (4) Resources.

Master Node - A batch system will have a master node where pbs_server runs. Depending on the
needs of the systems, a master node may be dedicated to this task, or it may fulfill the roles of other
components as well.

Submit/Interactive Nodes - Submit or interactive nodes provide an entry point to the system for
users to manage their workload. For these nodes, users are able to submit and track their jobs.
Additionally, some sites have one or more nodes reserved for interactive use, such as testing and
troubleshooting environment problems. These nodes have client commands (such as qsub and
qhold).

Compute Nodes - Compute nodes are the workhorses of the system. Their role is to execute
submitted jobs. On each compute node, pbs_mom runs to start, kill, and manage submitted jobs. It
communicates with pbs_server on the master node. Depending on the needs of the systems, a
compute node may double as the master node (or more).

Resources - Some systems are organized for the express purpose of managing a collection of
resources beyond compute nodes. Resources can include high-speed networks, storage systems,
license managers, and so forth. Availability of these resources is limited and needs to be managed
intelligently to promote fairness and increased utilization.

Basic Job Flow

The life cycle of a job can be divided into four stages: (1) creation, (2) submission, (3) execution, and (4)
finalization.

Creation - Typically, a submit script is written to hold all of the parameters of a job. These
parameters could include how long a job should run (walltime), what resources are necessary to run,
and what to execute. The following is an example submit file:

This submit script specifies the name of the job (localBlast), what environment to use (/bin/sh), that
it needs both processors on a single node (nodes=1:ppn=2), that it will run for at most 10 days, and
that TORQUE should email user@my.organization.com when the job exits or aborts. Additionally, the
user specifies where and what to execute.

Submission - A job is submitted with the qsub command. Once submitted, the policies set by the
administration and technical staff of the site dictate the priority of the job and therefore, when it will
start executing.

Execution - Jobs often spend most of their lifecycle executing. While a job is running, its status can be
queried with qstat.

Finalization - When a job completes, by default, the stdout and stderr files are copied to the
directory where the job was submitted.

#PBS -N localBlast
#PBS -S /bin/sh
#PBS -l nodes=1:ppn=2,walltime=240:00:00
#PBS -M user@my.organization.com
#PBS -m ea

source ~/.bashrc
cd $HOME/work/dir
sh myBlast.sh -i -v

Glossary
The following are a few terms that appear in the documentation:

Epilogue

An optional script executed after a job completes. epilogue.user, epilogue.parallel and epilogue.precancel
scripts also exist. See Appendix G: Prologue and Epilogue Scripts for more information.

Prologue

An optional script executed before a job starts. prologue.user and prologue.parallel scripts also exist. See
Appendix G: Prologue and Epilogue Scripts for more information.

$TORQUE_HOME

The base directory for configuration directories. Defaults to /var/spool/torque (starting with version 2.1.
Previously defaulted to /usr/spool/PBS)

1.1 TORQUE Installation

1.1.1 TORQUE Architecture

A TORQUE cluster consists of one head node and many compute nodes. The head node runs the pbs_server
daemon and the compute nodes run the pbs_mom daemon. Client commands for submitting and managing
jobs can be installed on any host (including hosts not running pbs_server or pbs_mom).

The head node also runs a scheduler daemon. The scheduler interacts with pbs_server to make local policy
decisions for resource usage and allocate nodes to jobs. A simple FIFO scheduler, and code to construct more
advanced schedulers, is provided in the TORQUE source distribution. Most TORQUE users choose to use a
packaged, advanced scheduler such as Maui or Moab.

Users submit jobs to pbs_server using the qsub command. When pbs_server receives a new job, it informs
the scheduler. When the scheduler finds nodes for the job, it sends instructions to run the job with the node
list to pbs_server. Then, pbs_server sends the new job to the first node in the node list and instructs it to
launch the job. This node is designated the execution host and is called Mother Superior. Other nodes in a job
are called sister moms.

1.1.2 Installing TORQUE

Build the distribution on the machine that will act as the TORQUE server - the machine which monitors and
controls all compute nodes by running the pbs_server daemon.

The built distribution package works only on compute nodes of a similar architecture. Nodes with
different architecture must have the installation package built on them individually.

1. Download the TORQUE distribution file from http://clusterresources.com/downloads/torque. Source
code can also be downloaded using Subversion from the repository at
svn://clusterresources.com/torque/. Use the command svn list
svn://clusterresources.com/torque/ to display all branches.

2. Extract the packaged file and navigate to the unpackaged directory.

3. Configure the package.

By default, make install installs all files in /usr/local/bin, /usr/local/lib, /usr/local/sbin,
/usr/local/include, and /usr/local/man . You can specify an installation prefix other than
/usr/local using --prefix as an argument to ./configure, for example:

Verify you have environment variables configured so your system can find the shared libraries and
binary files for TORQUE.

To set the library path, add the directory where the TORQUE libraries will be installed. For example, if
your TORQUE libraries are installed in /opt/torque/lib, execute the following:

Cluster Resources recommends that the TORQUE administrator be root.

For information on customizing the build at configure time, see the configure options list.

> tar -xzvf torque-2.3.4.tar.gz
> cd torque-2.3.4/

./configure --prefix=$HOME

> set LD_LIBRARY_PATH=$(LD_LIBRARY_PATH):/opt/torque/lib
> ldconfig

http://www.adaptivecomputing.com/resources/docs/maui
http://www.adaptivecomputing.com/resources/docs/mwm
http://clusterresources.com/downloads/torque

4. Run make and make install.

TORQUE must be installed by a root user.

OSX 10.4 users need to change #define __TDARWIN in src/include/pbs_config.h to #define
__TDARWIN_8.

After installation, verify you have the PATH environment variable configured to
include/usr/local/bin/ and /usr/local/sbin/.

By default, make install creates a directory at /var/spool/torque. This directory is referred to as
TORQUE_HOME. TORQUE_HOME has several sub-directories, including server_priv/, server_logs/,
mom_priv/, mom_logs/, and other directories used in the configuration and running of TORQUE.

TORQUE 2.0.2 and later includes a torque.spec file for building your own RPMs. You can also use the
checkinstall program to create your own RPM, tgz, or deb package.

While Adaptive Computing distributes the RPM files as part of the build, it does not support those files.
Not every Linux distribution uses RPM. Adaptive Computing provides a single solution using make and
make install that works across all Linux distributions and most UNIX systems. We recognize the RPM
format provides many advantages for deployment but it is up to the indiviual site to repackage the
TORQUE installation to match their individual needs.

1.1.3 Compute Nodes

Use the Cluster Resources tpackage system to create self-extracting tarballs which can be distributed and
installed on compute nodes. The tpackages are customizable. See the INSTALL file for additional options and
features.

To create tpackages

1. Configure and make as normal, and then run make packages.

2. Copy the desired packages to a shared location.

3. Install the tpackages on the compute nodes.

> ./configure

> make
> sudo make install

> make packages
Building ./torque-package-clients-linux-i686.sh ...
Building ./torque-package-mom-linux-i686.sh ...
Building ./torque-package-server-linux-i686.sh ...
Building ./torque-package-gui-linux-i686.sh ...
Building ./torque-package-devel-linux-i686.sh ...
Done.

The package files are self-extracting packages that can be copied
and executed on your production machines. Use --help for options.

> cp torque-package-mom-linux-i686.sh /shared/storage/
> cp torque-package-clients-linux-i686.sh /shared/storage/

http://asic-linux.com.mx/~izto/checkinstall/

Cluster Resources recommends that you use a remote shell, such as SSH, to install tpackages on
remote systems. Set up shared SSH keys if you do not want to supply a password for each host.

The only required package for the compute nodes is mom-linux. Additional packages are
recommended so you can use client commands and submit jobs from compute nodes.

The following is an example on how to copy and install mom-linux in a distributed fashion:

Alternatively, you can use a tool like xCAT instead of dsh.

1. Copy the tpackage to the nodes.

2. Install the tpackage.

Alternatively, users with RPM-based Linux distributions can build RPMs from the source tarball in two ways.

To use the default settings, use the rpmbuild command.

If configure options are required, untar and build as normal, and then use the make rpms command
instead.

Although optional, it is possible to use the TORQUE server as a compute node and install a pbs_mom with the
pbs_server daemon.

1.1.4 Enabling TORQUE as a service (optional)

The method for enabling TORQUE as a service is dependent on the Linux variant you are using. Startup
scripts are provided in the contrib/init.d/ directory of the source package.

Red Hat (as root)

SuSE (as root)

Debian (as root)

> for i in node01 node02 node03 node04 ; do scp torque-package-mom-
linux-i686.sh ${i}:/tmp/. ; done
> for i in node01 node02 node03 node04 ; do scp torque-package-
clients-linux-i686.sh ${i}:/tmp/. ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} /tmp/torque-
package-mom-linux-i686.sh --install ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} /tmp/torque-
package-clients-linux-i686.sh --install ; done

> prcp torque-package-linux-i686.sh noderange:/destinationdirectory/

> psh noderange /tmp/torque-package-linux-i686.sh --install

> rpmbuild -ta torque-2.3.4.tar.gz

> cp contrib/init.d/pbs_mom /etc/init.d/pbs_mom
> chkconfig --add pbs_mom

> cp contrib/init.d/suse.pbs_mom /etc/init.d/pbs_mom
> insserv -d pbs_mom

> cp contrib/init.d/debian.pbs_mom /etc/init.d/pbs_mom
> update-rc.d pbs_mom defaults

These options can be added to the self-extracting packages. For more details, see the INSTALL file.

See Also

TORQUE Installation TroubleShooting

1.2 Initialize/Configure TORQUE on the Server
(pbs_server)
The directory TORQUE_HOME/server_priv/ contains configuration and other information needed for
pbs_server. One of the files in this directory is serverdb. The serverdb file contains configuration
parameters for pbs_server and its queues. For pbs_server to run, serverdb must be initialized.

You can initialize serverdb in two different ways, but the recommended way is to use the ./torque.setup
script:

1. Execute ./torque.setup from the build directory.
2. pbs_server -t create

Restart pbs_server after initializing serverdb.

1.2.0.1 ./torque.setup

The torque.setup script uses pbs_server -t create to initialize serverdb and then adds a user as a
manager and operator of TORQUE and other commonly used attributes. The syntax is as follows:

./torque.setup <username>

1.2.0.2 pbs_server -t create

The -t create option instructs pbs_server to create the serverdb file and initialize it with a minimum
configuration to run pbs_server. To see the configuration, use qmgr:

> qterm
> pbs_server

> ./torque.setup ken
> qmgr -c 'p s'

#
Create queues and set their attributes.
#
#
Create and define queue batch
#
create queue batch
set queue batch queue_type = Execution
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server acl_hosts = kmn
set server managers = ken@kmn
set server operators = ken@kmn
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server scheduler_iteration = 600
set server node_check_rate = 150
set server tcp_timeout = 6
set server mom job sync = True

A single queue named batch and a few needed server attribues are created.

1.2.1 Specify Compute Nodes

The environment variable TORQUE_HOME is where configuration files are stored. For TORQUE 2.1 and later,
TORQUE_HOME is /var/spool/torque/. For earlier versions, TORQUE_HOME is /usr/spool/PBS/.

The pbs_server must recognize which systems on the network are its compute nodes. Specify each node on
a line in the server's nodes file. This file is located at TORQUE_HOME/server_priv/nodes. In most cases, it is
sufficient to specify just the names of the nodes on individual lines; however, various properties can be
applied to each node.

Syntax of nodes file:

The [:ts] option marks the node as timeshared. Timeshared nodes are listed by the server in the node
status report, but the server does not allocate jobs to them.

The [np=] option specifies the number of virtual processors for a given node. The value can be less than,
equal to, or greater than the number of physical processors on any given node.

The [gpus=] option specifies the number of GPUs for a given node. The value can be less than, equal to, or
greater than the number of physical GPUs on any given node.

The node processor count can be automatically detected by the TORQUE server if auto_node_np is set to
TRUE. This can be set using the command qmgr -c set server auto_node_np = True. Setting
auto_node_np to TRUE overwrites the value of np set in TORQUE_HOME/server_priv/nodes.

The [properties] option allows you to specify arbitrary strings to identify the node. Property strings are
alphanumeric characters only and must begin with an alphabetic character.

Comment lines are allowed in the nodes file if the first non-white space character is the pound sign (#).

The following example shows a possible node file listing.

TORQUE_HOME/server_priv/nodes:

> pbs_server -t create
> qmgr -c 'p s'

#
Set server attributes.
#
set server acl_hosts = kmn
set server log_events = 511
set server mail_from = adm
set server scheduler_iteration = 600
set server node_check_rate = 150
set server tcp_timeout = 6

node-name[:ts] [np=] [gpus=] [properties]

Nodes 001 and 003-005 are cluster nodes
#
node001 np=2 cluster01 rackNumber22
#
node002 will be replaced soon
node002:ts waitingToBeReplaced
node002 will be replaced soon
#
node003 np=4 cluster01 rackNumber24
node004 cluster01 rackNumber25
node005 np=2 cluster01 rackNumber26 RAM16GB
node006
node007 np=2

1.2.2 Configure TORQUE on the Compute Nodes

If using TORQUE self extracting packages with default compute node configuration, no additional steps are
required and you can skip this section.

If installing manually, or advanced compute node configuration is needed, edit the
TORQUE_HOME/mom_priv/config file on each node. The recommended settings follow.

TORQUE_HOME/mom_priv/config:

This file is identical for all compute nodes and can be created on the head node and distributed in parallel to
all systems.

1.2.3 Finalize Configurations

After configuring the serverdb and the server_priv/nodes files, and after ensuring minimal MOM
configuration, restart the pbs_server on the server node and the pbs_mom on the compute nodes.

Compute Nodes:

Server Node:

After waiting several seconds, the pbsnodes -a command should list all nodes in state free.

See Also

MOM Configuration Overview
Advanced Configuration

node008:ts np=4
...

$pbsserver headnode # note: hostname running pbs_server
$logevent 255 # bitmap of which events to log

> pbs_mom

> qterm -t quick
> pbs_server

1.3 Advanced Configuration

1.3.1 Customizing the Install

The TORQUE configure command has several options available. Listed below are some suggested options to
use when running ./configure.

By default, TORQUE does not install the admin manuals. To enable this, use --enable-docs
By default, TORQUE does not enable syslog usage. To enable this, use --enable-syslog

Full Configure Options List

Optional features:
Option Description

--disable-clients directs torque not to build and install the TORQUE client utilities such as qsub, qstat,
qdel, etc.

--disable-
dependency-
tracking

directs TORQUE build system to only rebuild changed source files and not rebuild
dependent files.

--disable-
FEATURE

do not include FEATURE (same as --enable-FEATURE=no).

--disable-gcc-
warnings

Disable gcc strictness and warnings. If using gcc, default is to error on any warning.

--disable-gui do not include the GUI-clients.

--disable-
libtool-lock

avoid locking (might break parallel builds).

--disable-mom do not include the MOM daemon.

--disable-mom-
checkspool

Don't check free space on spool directory and set an error.

--disable-
posixmemlock

disable the moms use of mlockall. Some versions of OSs seem to have buggy POSIX
MEMLOCK.

--disable-
privports

disable the use of privileged ports for authentication. Some versions of OSX have a
buggy bind() and cannot bind to privileged ports.

--disable-qsub-
keep-override

do not allow the qsub -k flag to override -o -e.

--disable-rpp By default, TORQUE uses RPP/UDP for resource queries from the PBS server to the
MOMs. If disabled, TCP is used. This does not affect general node/job status messages,
job launch/exit messages, inter-mom messages, etc.

--disable-server do not include server and scheduler.

--disable-shell-
pipe

give the job script file as standard input to the shell instead of passing its name via a
pipe.

--disable-spool if disabled, TORQUE will create output and error files directly in $HOME/.pbs_spool if it
exists or in $HOME otherwise. By default, TORQUE will spool files in TORQUE_HOME/spool
and copy them to the users home directory when the job completes.

--disable- With HPUX and GCC, don't force usage of XOPEN and libxnet.

xopen-
networking

--enable-acct-x enable adding x attributes to accounting log.

--enable-array setting this under IRIX enables the SGI Origin 2000 parallel support. Normally
autodetected from the /etc/config/array file.

--enable-
autorun

allows jobs to run automatically as soon as they are queued if resources are available
(available in TORQUE 2.3.1 and later).

--enable-blcr enable BLCR support.

--enable-cpa enable Cray's CPA support.

--enable-cpuset enable Linux 2.6 kernel cpusets (in development).

--enable-debug turn on the compilation of DEBUG code.

--enable-
dependency-
tracking

do not reject slow dependency extractors.

--enable-drmaa build the DRMAA 1.0 library.

--enable-fast-
install[=PKGS]

optimize for fast installation [default=yes].

--enable-
FEATURE[=ARG]

include FEATURE [ARG=yes].

--enable-
filesync

Open files with sync on each write operation. This has a negative impact on TORQUE
performance. This is disabled by default.

--enable-force-
nodefile

forces creation of nodefile regardless of job submission parameters. Not on by default.

--enable-
geometry-
requests

TORQUE is compiled to use procs_bitmap during job submission.

--enable-high-
availability

enables enhanced high availability (high availability is enabled by default, but this option
enables the enhanced version)

--enable-
maintainer-
mode

this is for the autoconf utility and tells autoconf to enable so called rebuild rules. See
maintainer mode for more information.

--enable-
maxdefault

turn on the RESOURCEMAXDEFAULT flag.

Versions of TORQUE earlier than 2.4.5 attempted to apply queue and server
defaults to a job that didn't have defaults specified. If a setting still did not have a
value after that, TORQUE applied the queue and server maximum values to a job
(meaning, the maximum values for an applicable setting were applied to jobs that
had no specified or default value).

In TORQUE 2.4.5 and later, the queue and server maximum values are no longer
used as a value for missing settings. To reenable this behavior in TORQUE 2.4.5
and later, use --enable-maxdefault.

http://www.gnu.org/software/hello/manual/automake/maintainer_002dmode.html

--enable-
nochildsignal

turn on the NO_SIGCHLD flag.

--enable-
nodemask

enable nodemask-based scheduling on the Origin 2000.

--enable-
pemask

enable pemask-based scheduling on the Cray T3e.

--enable-plock-
daemons[=ARG]

enable daemons to lock themselves into memory: logical-or of 1 for pbs_server, 2 for
pbs_scheduler, 4 for pbs_mom (no argument means 7 for all three).

--enable-
quickcommit

turn on the QUICKCOMMIT flag.

--enable-
shared[=PKGS]

build shared libraries [default=yes].

--enable-shell-
use-argv

enable this to put the job script name on the command line that invokes the shell. Not on
by default. Ignores --enable-shell-pipe setting.

--enable-sp2 build PBS for an IBM SP2.

--enable-srfs enable support for SRFS on Cray.

--enable-
static[=PKGS]

build static libraries [default=yes].

--enable-syslog enable (default) the use of syslog for error reporting.

--enable-tcl-
qstat

setting this builds qstat with Tcl interpreter features. This is enabled if Tcl is enabled.

--enable-
unixsockets

enable the use of Unix Domain sockets for authentication.

Optional Packages:
Option Description

--with-blcr=DIR BLCR installation prefix (Note: Available in versions 2.5.6 and 3.0.2 and
later.)

--with-blcr-include=DIR include path for libcr.h (Note: Available in versions 2.5.6 and 3.0.2 and later.)

--with-blcr-lib=DIR lib path for libcr (Note: Available in versions 2.5.6 and 3.0.2 and later.)

--with-blcr-bin=DIR bin path for BLCR utilities (Note: Available in versions 2.5.6 and 3.0.2 and
later.)

--with-cpa-include=DIR include path for cpalib.h.

--with-cpa-lib=DIR lib path for libcpalib.

--with-debug compile with debugging symbols.

--with-default-
server=HOSTNAME

set the name of the computer that clients will access when no machine name
is specified as part of the queue name. It defaults to the hostname of the
machine on which PBS is being compiled.

--with-environ=PATH set the path containing the environment variables for the daemons. For SP2
and AIX systems, suggested setting is to /etc/environment. Defaults to the
file "pbs_environment" in the server-home. Relative paths are interpreted

within the context of the server-home.

--with-gnu-ld assume the C compiler uses GNU ld [default=no].

--with-
maildomain=MAILDOMAIN

override the default domain for outgoing mail messages, i.e.
"user@maildomain". The default maildomain is the hostname where the job
was submitted from.

--with-modulefiles[=DIR] use module files in specified directory [/etc/modulefiles].

--with-momlogdir use this directory for MOM logs.

--with-momlogsuffix use this suffix for MOM logs.

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no).

--without-readline do not include readline support (default: included if found).

--with-PACKAGE[=ARG] use PACKAGE [ARG=yes].

--with-pam=DIR Directory that holds the system PAM modules. Defaults to /lib(64)/security on
Linux.

--with-pic try to use only PIC/non-PIC objects [default=use both].

--with-qstatrc-file=FILE set the name of the file that qstat will use if there is no ".qstatrc" file in the
directory where it is being invoked. Relative path names will be evaluated
relative to the server home directory (see above). If this option is not
specified, the default name for this file will be set to "qstatrc" (no dot) in the
server home directory.

--with-rcp one of "scp", "rcp", "mom_rcp", or the fullpath of a remote file copy program.
scp is the default if found, otherwise mom_rcp is used. Some rcp programs
don't always exit with valid error codes in case of failure. mom_rcp is a copy
of BSD rcp included with this source that has correct error codes, but it is also
old, unmaintained, and doesn't have largefile support.

--with-sched=TYPE sets the scheduler type. If TYPE is "c", the scheduler will be written in C. If
TYPE is "tcl" the server will use a Tcl based scheduler. If TYPE is "basl",
TORQUE will use the rule based scheduler. If TYPE is "no", then no scheduling
is done. "c" is the default.

--with-sched-code=PATH sets the name of the scheduler to use. This only applies to BASL schedulers
and those written in the C language. For C schedulers this should be a
directory name and for BASL schedulers a filename ending in ".basl". It will be
interpreted relative to srctree/src/schedulers.SCHD_TYPE/samples. As an
example, an appropriate BASL scheduler realtive path would be "nas.basl".
The default scheduler code for "C" schedulers is "fifo".

--with-scp In TORQUE 2.1 and later, SCP is the default remote copy protocol. See --
with-rcp if a different protocol is desired.

--with-sendmail[=FILE] sendmail executable to use.

--with-server-home=DIR set the server home/spool directory for PBS use. Defaults to
/var/spool/torque.

--with-server-name-
file=FILE

set the file that will contain the name of the default server for clients to use.
If this is not an absolute pathname, it will be evaluated relative to the server
home directory that either defaults to /usr/spool/PBS or is set using the --
with-server-home option to configure. If this option is not specified, the
default name for this file will be set to "server_name".

--with-tags[=TAGS] include additional configurations [automatic].

--with-tcl directory containing tcl configuration (tclConfig.sh).

--with-tclatrsep=CHAR set the Tcl attribute separator character this will default to "." if unspecified.

--with-tclinclude directory containing the public Tcl header files.

--with-tclx directory containing tclx configuration (tclxConfig.sh).

--with-tk directory containing tk configuration (tkConfig.sh).

--with-tkinclude directory containing the public Tk header files.

--with-tkx directory containing tkx configuration (tkxConfig.sh).

--with-tmpdir=DIR set the tmp directory that pbs_mom will use. Defaults to "/tmp". This is a
Cray-specific feature.

--with-xauth=PATH specify path to xauth program.

1.3.1.1 HAVE_WORDEXP

Wordxp() performs a shell-like expansion, including environment variables. By default, HAVE_WORDEXP is set
to 1 in src/pbs_config.h. If set to 1, TORQUE will limit the characters that can be used in a job name to those
allowed for a file in the current environment, such as BASH. If set to 0, any valid character for the file system
can be used.

If a user would like to disable this feature by setting HAVE_WORDEXP to 0 in src/include/pbs_config.h, it is
important to note that the error and the output file names will not expand environment variables, including
$PBS_JOBID. The other important consideration is that characters that BASH dislikes, such as (), will not be
allowed in the output and error file names for jobs by default.

1.3.2 Server Configuration

1.3.2.1 Server Configuration Overview

There are several steps to ensure that the server and the nodes are completely aware of each other and able
to communicate directly. Some of this configuration takes place within TORQUE directly using the qmgr
command. Other configuration settings are managed using the pbs_server nodes file, DNS files such as
/etc/hosts and the /etc/hosts.equiv file.

1.3.2.2 Name Service Configuration

Each node, as well as the server, must be able to resolve the name of every node with which it will interact.
This can be accomplished using /etc/hosts, DNS, NIS, or other mechanisms. In the case of /etc/hosts,
the file can be shared across systems in most cases.

A simple method of checking proper name service configuration is to verify that the server and the nodes can
"ping" each other.

1.3.2.3 Configuring Job Submission Hosts

Using RCmd Authentication

When jobs can be submitted from several different hosts, these hosts should be trusted via the R*
commands (such as rsh and rcp). This can be enabled by adding the hosts to the /etc/hosts.equiv file of the
machine executing the pbs_server daemon or using other R* command authorization methods. The exact
specification can vary from OS to OS (see the man page for ruserok to find out how your OS validates
remote users). In most cases, configuring this file is as simple as adding a line to your /etc/hosts.equiv
file, as in the following:

/etc/hosts.equiv:

Either of the hostname or username fields may be replaced with a wildcard symbol (+). The (+) may be used
as a stand-alone wildcard but not connected to a username or hostname, e.g., +node01 or +user01.
However, a (-) may be used in that manner to specifically exclude a user.

Following the Linux man page instructions for hosts.equiv may result in a failure. You cannot precede
the user or hostname with a (+). To clarify, node1 +user1 will not work and user1 will not be able to
submit jobs.

For example, the following lines will not work or will not have the desired effect:

These lines will work:

The most restrictive rules must precede more permissive rules. For example, to restrict user tsmith but allow
all others, follow this format:

Please note that when a hostname is specified, it must be the fully qualified domain name (FQDN) of the
host. Job submission can be further secured using the server or queue acl_hosts and acl_host_enabled
parameters.

Using the submit_hosts Server Parameter

Trusted submit host access may be directly specified without using RCmd authentication by setting the server
submit_hosts parameter via qmgr as in the following example:

Use of submit_hosts is potentially subject to DNS spoofing and should not be used outside of
controlled and trusted environments.

Allowing Job Submission from Compute Hosts

If preferred, all compute nodes can be enabled as job submit hosts without setting .rhosts or hosts.equiv
by setting the allow_node_submit parameter to true.

1.3.2.4 Configuring TORQUE on a Multi-Homed Server

If the pbs_server daemon is to be run on a multi-homed host (a host possessing multiple network
interfaces), the interface to be used can be explicitly set using the SERVERHOST parameter.

1.3.2.5 Architecture Specific Notes

1.3.2.5.1 Mac OS/X Specific Notes

With some versions of Mac OS/X, it is required to add the line $restricted *.<DOMAIN> to the pbs_mom

#[+ | -] [hostname] [username]
mynode.myorganization.com
.....

+node02 user1
node02 +user1

node03 +
+ jsmith
node04 -tjones

node01 -tsmith
node01 +

> qmgr -c 'set server submit_hosts = host1'
> qmgr -c 'set server submit_hosts += host2'
> qmgr -c 'set server submit_hosts += host3'

configuration file. This is required to work around some socket bind bugs in the OS.

1.3.2.6 Specifying Non-Root Administrators

By default, only root is allowed to start, configure and manage the pbs_server daemon. Additional trusted
users can be authorized using the parameters managers and operators. To configure these parameters use
the qmgr command, as in the following example:

All manager and operator specifications must include a user name and either a fully qualified domain name or
a host expression.

To enable all users to be trusted as both operators and administrators, place the + (plus) character on
its own line in the server_priv/acl_svr/operators and server_priv/acl_svr/managers files.

1.3.2.7 Setting Up E-mail

Moab relies on e-mails from TORQUE about job events. To set up e-mail, do the following:

1. Use the --with-sendmail configure option at configure time. TORQUE needs to know where the email
application is. If this option is not used, TORQUE tries to find the sendmail executable. If it isn't found,
TORQUE cannot send e-mails.

2. Set mail_domain in your server settings. If your domain is clusterresources.com, execute:

3. (Optional) You can override the default mail_body_fmt and mail_subject_fmt values via qmgr:

By default, users receive e-mails on job aborts. Each user can select which kind of e-mails to receive by
using the qsub -m option when submitting the job. If you want to dictate when each user should receive e-
mails, use a submit filter.

1.3.2.8 Using MUNGE Authentication

MUNGE is an authentication service that creates and validates user credentials. It was developed by Lawrence
Livermore National Laboratoy (LLNL) to be highly scalable so it can be used in large environments such as
HPC clusters. To learn more about MUNGE and how to install it, see http://code.google.com/p/munge/

Configuring TORQUE to use MUNGE is a compile time operation. When you are building TORQUE use –
enable-munge-auth as a command line option with ./configure.

You can use only one authorization method at a time. If –enable-munge-auth is configured, the privileged
port ruserok method is disabled.

TORQUE does not link any part of the MUNGE library into its executables. It calls the MUNGE and UNMUNGE
utilities which are part of the MUNGE daemon. The MUNGE daemon must be running on the server and all
submission hosts. The TORQUE client utilities call MUNGE and then deliver the encrypted credential to
pbs_server where the credential is then unmunged and the server verifies the user and host against the
authorized users configured in serverdb.

> qmgr

Qmgr: set server managers += josh@*.fsc.com
Qmgr: set server operators += josh@*.fsc.com

> ./configure --with-sendmail=<path_to_executable>

> qmgr -c 'set server mail_domain=clusterresources.com'

> qmgr -c 'set server mail_body_fmt=Job: %i \n Name: %j \n On host: %h
\n \n %m \n \n %d'
> qmgr -c 'set server mail_subject_fmt=Job %i - %r'

> ./configure –enable-munge-auth

http://code.google.com/p/munge/

Authorized users are added to serverdb using qmgr and the authorized_users server parameter. The syntax
for authorized_users is authorized_users=<user>@<host>. To add an authorized user to the server you can
use the following qmgr command:

The previous example adds user1 and user2 from hosta to the list of authorized users on the server. Users
can be removed from the list of authorized users by using the -= syntax as follows:

Users must be added with the <user>@<host> syntax. The user and the host portion can use the '*'
wildcard to allow multiple names to be accepted with a single entry. A range of user or host names can be
specified using a [a-b] syntax where a is the beginning of the range and b is the end.

This allows user1 through user10 on hosta to run client commands on the server.

See Also

Appendix B: Server Parameters

> qmgr -c 'set server authorized_users=user1@hosta
> qmgr -c 'set server authorized_users+=user2@hosta

> qmgr -c 'set server authorized_users-=user1@hosta

> qmgr -c 'set server authorized_users=user[1-10]@hosta

1.4 Manual Setup of Initial Server Configuration
Configuration of the pbs_server daemon is accomplished using the qmgr command. On a new system, the
configuration database must be initialized using the command pbs_server -t create. Once this is done, the
minimal configuration requires setting up the desired queue structure and enabling the scheduling interface.

The following example shows a simple one-queue configuration:

These commands need to be executed by root.

In this example, the configuration database is initialized and the scheduling interface is activated (using
'scheduling=true '). This interface allows the scheduler to receive job and node events which allow it to be
more responsive. The next step creates a queue and specifies the queue type. Within PBS, the queue must
be declared an 'execution queue in order for it to run jobs. Additional configuration (i.e., setting the queue
to started and enabled) allows the queue to accept job submissions, and launch queued jobs.

The next two lines are optional, setting default node and walltime attributes for a submitted job. These
defaults will be picked up by a job if values are not explicitly set by the submitting user. The final line,
default_queue=batch, is also a convenience line and indicates that a job should be placed in the batch
queue unless explicitly assigned to another queue.

Additional information on configuration can be found in the admin manual and in the qmgr man page.

pbs_server -t create
qmgr -c "set server scheduling=true"
qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"
qmgr -c "set server default_queue=batch"

1.5 Server Node File Configuration

1.5.1 Basic Node Specification

For the pbs_server to communicate with each of the moms, it needs to know which machines to contact.
Each node that is to be a part of the batch system must be specified on a line in the server nodes file. This
file is located at TORQUE_HOME/server_priv/nodes. In most cases, it is sufficient to specify just the node
name on a line as in the following example:

server_priv/nodes:

1.5.2 Specifying Virtual Processor Count for a Node

By default each node has one virtual processor. Increase the number using the np attribute in the nodes file.
The value of np can be equal to the number of physical cores on the node or it can be set to a value which
represents available "execution slots" for the node. The value used is determined by the administrator based
on hardware, system, and site criteria.

The following example shows how to set the np value in the nodes file. Note that node001 has two physical
cores and the administrator wants the value of np to reflect that. However, node002 will be set up to handle
multiple virtual processors without regard to the number of physical cores on the system.

server_priv/nodes:

1.5.3 Specifying GPU Count for a Node

TORQUE can track the number of GPUs on a node. The number of GPUs a node has is specified by the gpus
attribute in the nodes file. The value of gpu can be equal to the number of physical GPUs on the node or it
can be set to a value which represents available "execution slots" for the node. The value used is determined
by the administrator based on hardware, system, and site criteria.

The following example shows how to set the GPU value in the nodes file. Note that node001 has one physical
GPU and the administrator wants the value of gpus= to reflect that. However, node002 will be set up to
handle multiple virtual GPUs without regard to the number of physical GPUs on the system.

server_priv/nodes:

1.5.4 Specifying Node Features (aka Node Properties)

Node features can be specified by placing one or more white space delimited strings on the line for the
associated host as in the following example:

server_priv/nodes:

node001
node002
node003
node004

node001 np=2
node002 np=12
...

node001 gpus=1
node002 gpus=4
...

These features can be used by users to request specific nodes when submitting jobs.

See Also

Server Commands
Moab Node Feature Overview

node001 np=2 fast ia64
node002 np=4 bigmem fast ia64 smp
...

http://semper/resources/docs/mwm/12.2nodeattributes.php#nodefeatures

1.6 Testing Server Configuration
The pbs_server daemon was started on the TORQUE server when the torque.setup file was executed or
when it was manually configured. It must now be restarted so it can reload the updated configuration
changes.

At this point, the job should be in the Q state and will not run because a scheduler is not running yet.
TORQUE can use its native scheduler by running pbs_sched or an advanced scheduler (such as Moab
Workload Manager). Section 5.1 Integrating Schedulers for TORQUE details setting up an advanced
scheduler.

verify all queues are properly configured
> qstat -q

view additional server configuration
> qmgr -c 'p s'

verify all nodes are correctly reporting
> pbsnodes -a

submit a basic job - DO NOT RUN AS ROOT
> su - testuser
> echo "sleep 30" | qsub

verify jobs display
> qstat

http://www.adaptivecomputing.com/resources/docs/mwm
http://www.adaptivecomputing.com/resources/docs/mwm

1.7 TORQUE on NUMA Systems
Starting in TORQUE version 3.0, TORQUE can be configured to take full advantage of Non-Uniform Memory
Archtecture (NUMA) systems. The following instructions are a result of development on SGI Altix and UV
hardware.

1.7.1 TORQUE NUMA Configuration

There are three steps to configure TORQUE to take advantage of NUMA architectures:

1. Configure TORQUE with --enable-numa-support.
2. Create the mom_priv/mom.layout file.
3. Configure server_priv/nodes.

1.7.2 Building TORQUE with NUMA Support

To turn on NUMA support for TORQUE the -enable-numa-support option must be used during the configure
portion of the installation. In addition to any other configuration options, add the -enable-num-support
option as indicated in the following example:

1.7.2.1 Creating mom.layout

When TORQUE is enabled to run with NUMA support, there is only a single instance of pbs_mom (MOM) that
is run on the system. However, TORQUE will report that there are multiple nodes running in the cluster. While
pbs_mom and pbs_server both know there is only one instantiation of pbs_mom, they manage the cluster as
if there were multiple separate MOM nodes.

The mom.layout file is a virtual mapping between the system hardware configuration and how the
administrator wants TORQUE to view the system. Each line in the mom.layout file equates to a node in the
cluster and is referred to as a NUMA node. To properly set up the mom.layout file, it is important to know
how the hardware is configured. Use the topology command line utility and inspect the contents of
/sys/devices/system/node. The hwloc library can also be used to create a custom discovery tool.

Typing topology on the command line of a NUMA system produces something similar to the following:

$./configure --enable-numa-support

Partition number: 0
6 Blades
72 CPUs
378.43 Gb Memory Total

Blade ID asic NASID Memory

 0 r001i01b00 UVHub 1.0 0 67089152 kB
 1 r001i01b01 UVHub 1.0 2 67092480 kB
 2 r001i01b02 UVHub 1.0 4 67092480 kB
 3 r001i01b03 UVHub 1.0 6 67092480 kB
 4 r001i01b04 UVHub 1.0 8 67092480 kB
 5 r001i01b05 UVHub 1.0 10 67092480 kB

CPU Blade PhysID CoreID APIC-ID Family Model Speed L1(KiB)
L2(KiB) L3(KiB)

 0 r001i01b00 00 00 0 6 46 2666 32d/32i
256 18432
 1 r001i01b00 00 02 4 6 46 2666 32d/32i
256 18432
 2 r001i01b00 00 03 6 6 46 2666 32d/32i

From this partial output, note that this system has 72 CPUs on 6 blades. Each blade has 12 CPUs grouped
into clusters of 6 CPUs. If the entire content of this command were printed you would see each Blade ID and
the CPU ID assigned to each blade.

The topology command shows how the CPUs are distributed, but you likely also need to know where memory
is located relative to CPUs, so go to /sys/devices/system/node. If you list the node directory you will see
something similar to the following:

The directory entries node0, node1,...node11 represent groups of memory and CPUs local to each other.
These groups are a node board, a grouping of resources that are close together. In most cases, a node board
is made up of memory and processor cores. Each bank of memory is called a memory node by the operating
system, and there are certain CPUs that can access that memory very rapidly. Note under the directory for
node board node0 that there is an entry called cpulist. This contains the CPU IDs of all CPUs local to the
memory in node board 0.

Now create the mom.layout file. The content of cpulist 0-5 indicating CPUs 0-5 are local to the memory of
node board 0. The cpulist for node board 1 shows 6-11 indicating CPUs 6-11 are local to the memory of node
board 1. Repeat this for all twelve node boards and create the following mom.layout file for the 72 CPU
system.

cpus= should be the index of the cpus for that nodeboard or entity, and these are the cpus that will be
considered part of that numa node.

256 18432
 3 r001i01b00 00 08 16 6 46 2666 32d/32i
256 18432
 4 r001i01b00 00 09 18 6 46 2666 32d/32i
256 18432
 5 r001i01b00 00 11 22 6 46 2666 32d/32i

ls -al
total 0
drwxr-xr-x 14 root root 0 Dec 3 12:14 .
drwxr-xr-x 14 root root 0 Dec 3 12:13 ..
-r--r--r-- 1 root root 4096 Dec 3 14:58 has_cpu
-r--r--r-- 1 root root 4096 Dec 3 14:58 has_normal_memory
drwxr-xr-x 2 root root 0 Dec 3 12:14 node0
drwxr-xr-x 2 root root 0 Dec 3 12:14 node1
drwxr-xr-x 2 root root 0 Dec 3 12:14 node10
drwxr-xr-x 2 root root 0 Dec 3 12:14 node11
drwxr-xr-x 2 root root 0 Dec 3 12:14 node2
drwxr-xr-x 2 root root 0 Dec 3 12:14 node3
drwxr-xr-x 2 root root 0 Dec 3 12:14 node4
drwxr-xr-x 2 root root 0 Dec 3 12:14 node5
drwxr-xr-x 2 root root 0 Dec 3 12:14 node6
drwxr-xr-x 2 root root 0 Dec 3 12:14 node7
drwxr-xr-x 2 root root 0 Dec 3 12:14 node8
drwxr-xr-x 2 root root 0 Dec 3 12:14 node9
-r--r--r-- 1 root root 4096 Dec 3 14:58 online
-r--r--r-- 1 root root 4096 Dec 3 14:58 possible

cpus=0-5 mem=0
cpus=6-11 mem=1
cpus=12-17 mem=2
cpus=18-23 mem=3
cpus=24-29 mem=4
cpus=30-35 mem=5
cpus=36-41 mem=6
cpus=42-47 mem=7
cpus=48-53 mem=8
cpus=54-59 mem=9
cpus=60-65 mem=10
cpus=66-71 mem=11

mem= should be the index of the memory nodes that are associated with that node board or entity, and
the memory from these will be considered part of that NUMA node.

Each line in the mom.layout file is reported as a node to pbs_server by the pbs_mom daemon.

The mom.layout file does not need to match the hardware layout exactly. It is possible to combine node
boards and create larger NUMA nodes. The following example shows how to do this:

The memory nodes can be combined the same as CPUs. The memory nodes combined must be contiguous.
You cannot combine mem 0 and 2.

1.7.2.2 Configuring server_priv/nodes

The pbs_server requires awareness of how the MOM is reporting nodes since there is only one MOM daemon
and multiple MOM nodes. So, configure the server_priv/nodes file with the num_numa_nodes and
numa_node_str attributes. The attribute num_numa_nodes tells pbs_server how many numa nodes are
reported by the MOM. Following is an example of how to configure the nodes file with num_numa_nodes:

This line in the nodes file tells pbs_server there is a host named numa-10 and that it has 72 processors and
12 nodes. The pbs_server divides the value of np (72) by the value for num_numa_nodes (12) and
determines there are 6 CPUs per NUMA node.

In this example, the NUMA system is uniform in its configuration of CPUs per node board, but a system does
not need to be configured with the same number of CPUs per node board. For systems with non-uniform CPU
distributions, use the attribute numa_node_str to let pbs_server know where CPUs are located in the cluster.

The following is an example of how to configure the server_priv/nodes file for non-uniformly distributed
CPUs:

In this configuration, pbs_server knows it has three MOM nodes and the nodes have 6, 8, and 12 CPUs
respectively. Note that the attribute np is not used. The np attribute is ignored because the number of CPUs
per node is expressly given.

1.7.2.2.1 Enforcement of memory resource limits

TORQUE can better enforce memory limits with the use of the utility memacctd. The memacctd utility is
provided by SGI on SuSe Linux Enterprise Edition (SLES). It is a daemon that caches memory footprints
when it is queried. When configured to use the memory monitor, TORQUE queries memacctd. It is up to the
user to make sure memacctd is installed. See the SGI memacctd man page for more information.

To configure TORQUE to use memacctd for memory enforcement do the following:

1. Start memacctd as instructed by SGI.
2. Reconfigure TORQUE with -enable-numa-mem-monitor. This will link in the necessary library when

TORQUE is recompiled.
3. Recompile and reinstall TORQUE.
4. Restart all MOM nodes.
5. (optional) Alter the qsub filter to include a default memory limit for all jobs that are not submitted with

memory limit.

cpus=0-11 mem=0-1

 numa-10 np=72 num_numa_nodes=12

 Numa-11 numa_node_str=6,8,12

http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=linux&db=man&fname=/usr/share/catman/man8/memacctd.8.html

1.8 TORQUE Multi-MOM
Starting in TORQUE version 3.0 users can run multiple MOMs on a single node. The initial reason to develop a
multiple MOM capability was for testing purposes. A small cluster can be made to look larger since each MOM
instance is treated as a separate node.

When running multiple MOMs on a node each MOM must have its own service and manager ports assigned.
The default ports used by the MOM are 15002 and 15003. With the multi-mom alternate ports can be used
without the need to change the default ports for pbs_server even when running a single instance of the
MOM.

1.8.1 Configuration

There are three steps to setting up multi-mom capability:

1. Configure server_priv/nodes file
2. Edit /etc/hosts file
3. Start pbs_mom with multi-mom options

1.8.1.1 Configure server_priv/nodes

The attributes mom_service_port and mom_manager_port were added to the nodes file syntax to
accommodate multiple MOMs on a single node. By default pbs_mom opens ports 15002 and 15003 for the
service and management ports respectively. For multiple MOMs to run on the same IP address they need to
have their own port values so they can be distinguished from each other. pbs_server learns about the port
addresses of the different MOMs from entries in the server_priv/nodes file. The following is an example of a
nodes file configured for multiple MOMs:

Note that all entries have a unique host name and that all port values are also unique. The entry hosta does
not have a mom_service_port or mom_manager_port given. If unspecified, then the MOM defaults to ports
15002 and 15003.

1.8.1.2 /ect/hosts file

Host names in the server_priv/nodes file must be resolvable. Creating an alias for each host enables the
server to find the IP address for each MOM; the server uses the port values from the server_priv/nodes file to
contact the correct MOM. An example /etc/hosts entry for the previous server_priv/nodes example might look
like the following:

Even though the host name and all the aliases resolve to the same IP address, each MOM instance can still
be distinguished from the others because of the unique port value assigned in the server_priv/nodes file.

1.8.1.3 Starting pbs_mom with multi-mom options

To start multiple instances of pbs_mom on the same node, use the following syntax:

Continuing based on the earlier example, if you want to create four MOMs on hosta, type the following at the
command line:

 hosta np=2
 hosta-1 np=2 mom_service_port=30001 mom_manager_port=30002
 hosta-2 np=2 mom_service_port=31001 mom_manager_port=31002
 hosta-3 np=2 mom_service_port=32001 mom_manager_port=32002

 192.65.73.10 hosta hosta-1 hosta-2 hosta-3

 pbs_mom -m -M <port value of mom_service_port> -R <port value
of mom_manager_port>

Notice that the last call to pbs_mom uses no arguments. By default pbs_mom opens on ports 15002 and
15003. No arguments are necessary because there are no conflicts.

1.8.2 Stopping pbs_mom in multi-mom mode

Terminate pbs_mom by using the momctl -s command. For any MOM using the default manager port 15003,
the momctl -s command stops the mom. However, to terminate moms with a manager port value not equal
to 15003, you must use the following syntax:

The -p option sends the terminating signal to the MOM manager port and the MOM is terminated.

pbs_mom -m -M 30001 -R 30002
pbs_mom -m -M 31001 -R 31002
pbs_mom -m -M 32001 -R 32002
pbs_mom

momctl -s -p

2.1 Job Submission
2.1.1 Multiple Jobs Submission
2.1.2 Requesting Resources
2.1.3 Requesting Generic Resources
2.1.4 Requesting Floating Resources
2.1.5 Requesting Other Resources
2.1.6 Exported Batch Environment Variables
2.1.7 Enabling Trusted Submit Hosts
2.1.8 Example Submit Scripts

Job submission is accomplished using the qsub command, which takes a number of command line arguments and
integrates such into the specified PBS command file. The PBS command file may be specified as a filename on the qsub
command line or may be entered via STDIN.

The PBS command file does not need to be executable.
The PBS command file may be piped into qsub (i.e., cat pbs.cmd | qsub)
In the case of parallel jobs, the PBS command file is staged to, and executed on, the first allocated compute node
only. (Use pbsdsh to run actions on multiple nodes.)
The command script is executed from the user's home directory in all cases. (The script may determine the
submission directory by using the $PBS_O_WORKDIR environment variable)
The command script will be executed using the default set of user environment variables unless the -V or -v flags
are specified to include aspects of the job submission environment.

By default, job submission is allowed only on the TORQUE server host (host on which pbs_server is running).
Enablement of job submission from other hosts is documented in Configuring Job Submit Hosts.

Versions of TORQUE earlier than 2.4.5 attempted to apply queue and server defaults to a job that didn't have
defaults specified. If a setting still did not have a value after that, TORQUE applied the queue and server
maximum values to a job (meaning, the maximum values for an applicable setting were applied to jobs that had
no specified or default value).

In TORQUE 2.4.5 and later, the queue and server maximum values are no longer used as a value for missing
settings.

2.1.1 Multiple Jobs Submission

Sometimes users will want to submit large numbers of jobs based on the same job script. Rather than using a script to
repeatedly call qsub, a feature known as job arrays now exists to allow the creation of multiple jobs with one qsub
command. Additionally, this feature includes a new job naming convention that allows users to reference the entire set of
jobs as a unit, or to reference one particular job from the set.

Job arrays are submitted through the -t option to qsub, or by using #PBS -t in your batch script. This option takes a
comma-separated list consisting of either a single job ID number, or a pair of numbers separated by a dash. Each of
these jobs created will use the same script and will be running in a nearly identical environment.

Versions of TORQUE earlier than 2.3 had different semantics for the -t argument. In these versions, -t took a
single integer number—a count of the number of jobs to be created.

Each 1098[x] job has an environment variable called PBS_ARRAYID, which is set to the value of the array index of the
job, so 1098[0].hostname would have PBS_ARRAYID set to 0. This allows you to create job arrays where each job in the
array performs slightly different actions based on the value of this variable, such as performing the same tasks on
different input files. One other difference in the environment between jobs in the same array is the value of the
PBS_JOBNAME variable.

> qstat -t 0-4 job_script
1098[].hostname

> qstat
1098[0].hostname ...
1098[1].hostname ...
1098[2].hostname ...
1098[3].hostname ...
1098[4].hostname ...

Running qstat displays a job summary, which provides an overview of the array's state. To see each job in the array, run
qstat -t.

The qalter, qdel, qhold, and qrls commands can operate on arrays—either the entire array or a range of that array.
Additionally, any job in the array may be accessed normally by using that job's ID, just as you would with any other job.
For example, running the following command would run only the specified job:

2.1.2 Requesting Resources

Various resources can be requested at the time of job submission. A job can request a particular node, a particular node
attribute, or even a number of nodes with particular attributes. Either native TORQUE resources, or external scheduler
resource extensions may be specified. The native TORQUE resources are listed in the following table:

Resource Format Description

arch string Specifies the administrator defined
system architecture required. This
defaults to whatever the PBS_MACH
string is set to in "local.mk".

cput seconds, or [[HH:]MM:]SS Maximum amount of CPU time used by all
processes in the job.

epilogue string Specifies a user owned epilogue script
which will be run before the system
epilogue and epilogue.user scripts at the
completion of a job. The syntax is
epilogue=<file>. The file can be
designated with an absolute or relative
path.

file size* The amount of total disk requested for
the job. (Ignored on Unicos.)

host string Name of the host on which the job should
be run. This resource is provided for use
by the site's scheduling policy. The
allowable values and effect on job
placement is site dependent.

mem size* Maximum amount of physical memory
used by the job. (Ignored on Darwin,
Digital Unix, Free BSD, HPUX 11, IRIX,
NetBSD, and SunOS. Also ignored on
Linux if number of nodes is not 1. Not
implemented on AIX and HPUX 10.)

nice integer Number between -20 (highest priority)
and 19 (lowest priority). Adjust the
process execution priority.

nodes {<node_count> | <hostname>}
[:ppn=<ppn>][:gpus=<gpu>][:<property>[:<property>]...]
[+ ...]

Number and/or type of nodes to be
reserved for exclusive use by the job. The
value is one or more node_specs joined
with the + (plus) character:

These two examples are equivalent in TORQUE 2.2
> qsub -t 0-99
> qsub -t 100

You can also pass comma delimited lists of ids and ranges:
> qsub -t 0,10,20,30,40
> qsub -t 0-50,60,70,80

qrun 1098[0].hostname

node_spec[+node_spec...]. Each
node_spec is a number of nodes required
of the type declared in the node_spec and
a name of one or more properties desired
for the nodes. The number, the name,
and each property in the node_spec are
separated by a : (colon). If no number is
specified, one (1) is assumed.

The name of a node is its hostname. The
properties of nodes are:

ppn=# - Specify the number of
virtual processors per node
requested for this job.

The number of virtual processors
available on a node by default is 1,
but it can be configured in the
$TORQUE_HOME/server_priv/nodes
file using the np attribute. The
virtual processor can relate to a
physical core on the node or it can
be interpreted as an "execution
slot" such as on sites that set the
node np value greater than the
number of physical cores (or
hyper-thread contexts). The ppn
value is a characteristic of the
hardware, system, and site, and its
value is to be determined by the
administrator.

gpus=# - Specify the number of
GPUs per node requested for this
job.

The number of GPUs available on a
node can be configured in the
$TORQUE_HOME/server_priv/nodes
file using the gpu attribute. The
GPU value is a characteristic of the
hardware, system, and site, and its
value is to be determined by the
administrator.

property - A string assigned by
the system administrator specifying
a node's features. Check with your
administrator as to the node names
and properties available to you.

See Example 1 (-l nodes) for examples.

By default, the node resource is
mapped to a virtual node (that is,
directly to a processor, not a full
physical compute node). This
behavior can be changed within
Maui or Moab by setting the
JOBNODEMATCHPOLICY
parameter. See Appendix F of the
Moab Workload Manager
Administrator's Guide for more

information.

opsys string Specifies the administrator defined
operating system as defined in the MOM
configuration file.

other string Allows a user to specify site specific
information. This resource is provided for
use by the site's scheduling policy. The
allowable values and effect on job
placement is site dependent.

This does not work for msub using
Moab and Maui.

pcput seconds, or [[HH:]MM:]SS Maximum amount of CPU time used by
any single process in the job.

pmem size* Maximum amount of physical memory
used by any single process of the job.
(Ignored on Fujitsu. Not implemented on
Digital Unix and HPUX.)

procs procs=<integer> (Applicable in version 2.5.0 and later.)
The number of processors to be allocated
to a job. The processors can come from
one or more qualified node(s). Only one
procs declaration may be used per
submitted qsub command.

procs_bitmap string A string made up of 1's and 0's in reverse
order of the processor cores requested. A
procs_bitmap=1110 means the job
requests a node that has four available
cores, but the job runs exclusively on
cores two, three, and four. With this
bitmap, core one is not used.

prologue string Specifies a user owned prologue script
which will be run after the system
prologue and prologue.user scripts at the
beginning of a job. The syntax is
prologue=<file>. The file can be
designated with an absolute or relative
path.

pvmem size* Maximum amount of virtual memory used
by any single process in the job. (Ignored
on Unicos.)

software string Allows a user to specify software required
by the job. This is useful if certain
software packages are only available on
certain systems in the site. This resource
is provided for use by the site's
scheduling policy. The allowable values
and effect on job placement is site
dependent. (See Scheduler License
Management in the Moab Workload
Manager Administrator's Guide for more
information.)

> qsub -l nodes=3 -1 procs=2

http://semper/docs/mwm/13.7licensemanagement.php
http://semper/docs/mwm/13.7licensemanagement.php

vmem size* Maximum amount of virtual memory used
by all concurrent processes in the job.
(Ignored on Unicos.)

walltime seconds, or [[HH:]MM:]SS Maximum amount of real time during
which the job can be in the running state.

*size format:

The size format specifies the maximum amount in terms of bytes or words. It is expressed in the form integer[suffix].
The suffix is a multiplier defined in the following table ('b' means bytes (the default) and 'w' means words). The size of a
word is calculated on the execution server as its word size.

Suffix Multiplier

b w 1

kb kw 1024

mb mw 1,048,576

gb gw 1,073,741,824

tb tw 1,099,511,627,776

Example 1 (qsub -l nodes)

Usage Description

request 12 nodes of any type

request 2 "server" nodes and 14 other nodes (a total
of 16) - this specifies two node_specs, "2:server" and
"14"

request (a) 1 node that is a "server" and has a "hippi"
interface, (b) 10 nodes that are not servers, and (c) 3
nodes that have a large amount of memory and have
hippi

request 3 specific nodes by hostname

request 2 processors on each of four nodes

request 4 processors on one node

request 2 processors on each of two blue nodes, three
processors on one red node, and the compute node
"b1014"

Example 2

This job requests a node with 200 MB of available memory.

Example 3

This job will wait until node01 is free with 200 MB of available memory.

2.1.3 Requesting Generic Resources

When generic resources have been assigned to nodes using the server's nodes file, these resources can be requested at

> qsub -l nodes=12

> qsub -l nodes=2:server+14

> qsub -l
nodes=server:hippi+10:noserver+3:bigmem:hippi

> qsub -l nodes=b2005+b1803+b1813

> qsub -l nodes=4:ppn=2

> qsub -l nodes=1:ppn=4

> qsub -l nodes=2:blue:ppn=2+red:ppn=3+b1014

> qsub -l mem=200mb /home/user/script.sh

> qsub -l nodes=node01,mem=200mb /home/user/script.sh

the time of job submission using the other field. (See Consumable Generic Resources in the Moab Workload Manager
Administrator's Guide for details on configuration within Moab).

Example 1

This job will run on any node that has the generic resource matlab.

This can also be requested at the time of job submission using the -W x=GRES:matlab flag.

2.1.4 Requesting Floating Resources

When floating resources have been set up inside Moab, they can be requested in the same way as generic resources.
Moab will automatically understand that these resources are floating and will schedule the job accordingly. (See Floating
Generic Resources in the Moab Workload Manager Administrator's Guide for details on configuration within Moab.)

Example 2

This job will run on any node when there are enough floating resources available.

This can also be requested at the time of job submission using the -W x=GRES:matlab flag.

2.1.5 Requesting Other Resources

Many other resources can be requested at the time of job submission using the Moab Workload Manager. See Resource
Manager Extensions in the Moab Workload Manager Administrator's Guide for a list of these supported requests and
correct syntax.

2.1.6 Exported Batch Environment Variables

When a batch job is started, a number of variables are introduced into the job's environment that can be used by the
batch script in making decisions, creating output files, and so forth. These variables are listed in the following table:

Variable Description

PBS_JOBNAME user specified jobname

PBS_ARRAYID zero-based value of job array index for this job (in version 2.2.0 and later)

PBS_O_WORKDIR job's submission directory

PBS_ENVIRONMENT N/A

PBS_TASKNUM number of tasks requested

PBS_O_HOME home directory of submitting user

PBS_MOMPORT active port for MOM daemon

PBS_O_LOGNAME name of submitting user

PBS_O_LANG language variable for job

PBS_JOBCOOKIE job cookie

PBS_NODENUM node offset number

PBS_O_SHELL script shell

PBS_O_JOBID unique pbs job id

PBS_O_HOST host on which job script is currently running

PBS_QUEUE job queue

> qsub -l other=matlab /home/user/script.sh

> qsub -l other=matlab /home/user/script.sh

http://semper/docs/mwm/12.6consumablegres.php
http://semper/docs/mwm/12.4generalresources.php
http://semper/docs/mwm/12.4generalresources.php
http://semper/docs/mwm/13.3rmextensions.php
http://semper/docs/mwm/13.3rmextensions.php

PBS_NODEFILE file containing line delimited list on nodes allocated to the job

PBS_O_PATH path variable used to locate executables within job script

2.1.7 Enabling Trusted Submit Hosts

By default, only the node running the pbs_server daemon is allowed to submit jobs. Additional nodes can be trusted as
submit hosts by taking any of the following steps:

Set the allow_node_submit server parameter.
Allows any host trusted as a compute host to also be trusted as a submit host.

Set the submit_hosts server parameter (comma-delimited).
Allows specified hosts to be trusted as a submit host.

Use .rhosts to enable ruserok() based authentication.

See Job Submission Host Advanced Config for more information.

If allow_node_submit is set, the parameter allow_proxy_user must be set to allow user proxying when
submitting/running jobs.

2.1.8 Example Submit Scripts

The following is an example job test script:

See Also

Maui Documentation
http://www.lunarc.lu.se/Support/SpecialTopics/ExampleScripts/MatlabScripts/MatlabScript
http://www.clusters.umaine.edu/wiki/index.php/Example_Submission_Scripts
qsub wrapper - Allow local checking and modification of submitted jobs

#!/bin/sh
#
#This is an example script example.sh
#
#These commands set up the Grid Environment for your job:
#PBS -N ExampleJob
#PBS -l nodes=1,walltime=00:01:00
#PBS -q np_workq
#PBS -M YOURUNIQNAME@umich.edu
#PBS -m abe

#print the time and date
date

#wait 10 seconds
sleep 10

#print the time and date again
date

http://www.lunarc.lu.se/Support/SpecialTopics/ExampleScripts/MatlabScripts/MatlabScript
http://www.clusters.umaine.edu/wiki/index.php/Example_Submission_Scripts

2.2 Monitoring Jobs
TORQUE allows users and administrators to monitor submitted jobs with the qstat command. If the command
is run by a non-administrative user, it will output just that user's jobs. For example:

> qstat

Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - ----
-
4807 scatter user01 12:56:34 R batch
...

2.3 Canceling Jobs
TORQUE allows users and administrators to cancel submitted jobs with the qdel command. The job will be
sent TERM and KILL signals killing the running processes. When the top-level job script exits, the job will exit.
The only parameter is the ID of the job to be canceled.

If a job is canceled by an operator or manager, an email notification will be sent to the user. Operators and
managers may add a comment to this email with the -m option.

$ qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - ----
-
4807 scatter user01 12:56:34 R batch
...
$ qdel -m "hey! Stop abusing the NFS servers" 4807
$

2.4 Job Preemption
TORQUE supports job preemption by allowing authorized users to suspend and resume jobs. This is supported
using one of two methods. If the node supports OS-level preemption, TORQUE will recognize that during the
configure process and enable it. Otherwise, the MOM may be configured to launch a custom checkpoint script
in order to support preempting a job. Using a custom checkpoint script requires that the job understand how
to resume itself from a checkpoint after the preemption occurs.

Configuring a Checkpoint Script on a MOM

To configure the MOM to support a checkpoint script, the $checkpoint_script parameter must be set in the
MOM's configuration file found in TORQUE_HOME/mom_priv/config. The checkpoint script should have execute
permissions set. A typical configuration file might look as follows:

mom_priv/config:

The second thing that must be done to enable the checkpoint script is to change the value of
MOM_CHECKPOINT to 1 in /src/include/pbs_config.h. In some instances, MOM_CHECKPOINT may already be
defined as 1. The new line should be as follows:

/src/include/pbs_config.h:

$pbsserver node06
$logevent 255
$restricted *.mycluster.org
$checkpoint_script /opt/moab/tools/mom-checkpoint.sh

#define MOM_CHECKPOINT 1

2.5 Keeping Completed Jobs
TORQUE provides the ability to report on the status of completed jobs for a configurable duration after the
job has completed. This can be enabled by setting the keep_completed attribute on the job execution
queue. This should be set to the number of seconds that jobs should be held in the queue. Completed jobs
will be reported in the C state and the exit status is seen in the exit_status job attribute.

By maintaining status information about completed (or canceled, failed, etc.) jobs, administrators can better
track failures and improve system performance. This allows TORQUE to better communicate with Moab
Workload Manager and track the status of jobs. This gives Moab the ability to track specific failures and to
schedule the workload around possible hazards. (See NODEFAILURERESERVETIME in Appendix F of the Moab
Workload Manager Administrator's Guide for more information.)

2.6 Job Checkpoint and Restart
While TORQUE has had a job checkpoint and restart capability for many years, this was tied to machine
specific features. Now TORQUE supports BLCR — an architecture independent package that provides for
process checkpoint and restart.

The support for BLCR is only for serial jobs, not for any MPI type jobs.

Introduction to BLCR

BLCR is a kernel level package. It must be downloaded and installed from BLCR.

After building and making the package, it must be installed into the kernel with commands as follows. These
can be installed into the file /etc/modules but all of the testing was done with explicit invocations of
modprobe.

Installing BLCR into the kernel:

The BLCR system provides four command line utilities: (1) cr_checkpoint, (2) cr_info, (3) cr_restart, and
(4) cr_run.

For more information about BLCR, see the BLCR Administrator's Guide.

Configuration files and scripts

Configuring and Building TORQUE for BLCR:

Depending on where BLCR is installed you may also need to use the following configure options to specify
BLCR paths:

--with-blcr-include=DIR include path for libcr.h
--with-blcr-lib=DIR lib path for libcr
--with-blcr-bin=DIR bin path for BLCR utilities

The pbs_mom configuration file located in /var/spool/torque/mom_priv must be modified to identify the script
names associated with invoking the BLCR commands. The following variables should be used in the
configuration file when using BLCR checkpointing.

$checkpoint_interval - How often periodic job checkpoints will be taken (minutes).
$checkpoint_script - The name of the script file to execute to perform a job checkpoint.
$restart_script - The name of the script file to execute to perform a job restart.
$checkpoint_run_exe - The name of an executable program to be run when starting a checkpointable
job (for BLCR, cr_run).

The following example shows the contents of the configuration file used for testing the BLCR feature in
TORQUE.

The script files below must be executable by the user. Be sure to use chmod to set the permissions to
754.

Script file permissions:

/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr_imports.ko
/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr_vmadump.ko
/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr.ko

> ./configure --enable-unixsockets=no --enable-blcr
> make
> sudo make install

http://ftg.lbl.gov/CheckpointRestart/CheckpointRestart.shtml
http://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Admin_Guide.html

mom_priv/config:

mom_priv/blcr_checkpoint_script:

mom_priv/blcr_restart_script:

chmod 754 blcr*
ls -l
total 20
-rwxr-xr-- 1 root root 2112 2008-03-11 13:14 blcr_checkpoint_script
-rwxr-xr-- 1 root root 1987 2008-03-11 13:14 blcr_restart_script
-rw-r--r-- 1 root root 215 2008-03-11 13:13 config
drwxr-x--x 2 root root 4096 2008-03-11 13:21 jobs
-rw-r--r-- 1 root root 7 2008-03-11 13:15 mom.lock

$checkpoint_script /var/spool/torque/mom_priv/blcr_checkpoint_script
$restart_script /var/spool/torque/mom_priv/blcr_restart_script
$checkpoint_run_exe /usr/local/bin/cr_run
$pbsserver makua.cridomain
$loglevel 7

#! /usr/bin/perl
###

#
Usage: checkpoint_script
#
This script is invoked by pbs_mom to checkpoint a job.
#
###

use strict;
use Sys::Syslog;

Log levels:
0 = none -- no logging
1 = fail -- log only failures
2 = info -- log invocations
3 = debug -- log all subcommands
my $logLevel = 3;

logPrint(2, "Invoked: $0 " . join(' ', @ARGV) . "\n");

my ($sessionId, $jobId, $userId, $signalNum, $checkpointDir,
$checkpointName);
my $usage =
 "Usage: $0 \n";

Note that depth is not used in this script but could control a
limit to the number of checkpoint

#! /usr/bin/perl
###

#
Usage: restart_script
#
This script is invoked by pbs_mom to restart a job.
#
###

use strict;
use Sys::Syslog;

Log levels:

Starting a checkpointable job

Not every job is checkpointable. A job for which checkpointing is desirable must be started with the -c
command line option. This option takes a comma-separated list of arguments that are used to control
checkpointing behavior. The list of valid options available in the 2.4 version of Torque is show below.

none - No checkpointing (not highly useful, but included for completeness).
enabled - Specify that checkpointing is allowed, but must be explicitly invoked by either the qhold or
qchkpt commands.
shutdown - Specify that checkpointing is to be done on a job at pbs_mom shutdown.
periodic - Specify that periodic checkpointing is enabled. The default interval is 10 minutes and can
be changed by the $checkpoint_interval option in the MOM configuration file, or by specifying an
interval when the job is submitted.
interval=minutes - Specify the checkpoint interval in minutes.
depth=number - Specify a number (depth) of checkpoint images to be kept in the checkpoint
directory.
dir=path - Specify a checkpoint directory (default is /var/spool/torque/checkpoint).

Sample test program:

Instructions for building test program:

Sample test script:

Starting the test job:

0 = none -- no logging
1 = fail -- log only failures
2 = info -- log invocations
3 = debug -- log all subcommands
my $logLevel = 3;

logPrint(2, "Invoked: $0 " . join(' ', @ARGV) . "\n");

my ($sessionId, $jobId, $userId, $checkpointDir, $restartName);
my $usage =
 "Usage: $0 \n";
if (@ARGV == 5)
{
 ($sessionId, $jobId, $userId, $checkpointDir, $restartName) =
 @ARGV;

#include "stdio.h"
int main(int argc, char *argv[])
{
int i;
 for (i=0; i<100; i++)
 {
 printf("i = %d\n", i);
 fflush(stdout);
 sleep(1);
 }
}

> gcc -o test test.c

#!/bin/bash

./test

> qstat
> qsub -c enabled,periodic,shutdown,interval=1 test.sh
77.jakaa.cridomain
> qstat

If you have no scheduler running, you might need to start the job with qrun.

As this program runs, it writes its output to a file in /var/spool/torque/spool. This file can be observered with
the command tail -f.

Checkpointing a job

Jobs are checkpointed by issuing a qhold command. This causes an image file representing the state of the
process to be written to disk. The directory by default is /var/spool/torque/checkpoint.

This default can be altered at the queue level with the qmgr command. For example, the command qmgr -c
set queue batch checkpoint_dir=/tmp would change the checkpoint directory to /tmp for the queue
'batch'.

The default directory can also be altered at job submission time with the -c dir=/tmp command line option.

The name of the checkpoint directory and the name of the checkpoint image file become attributes of the job
and can be observed with the command qstat -f. Notice in the output the names checkpoint_dir and
checkpoint_name. The variable checkpoint_name is set when the image file is created and will not exist
if no checkpoint has been taken.

A job can also be checkpointed without stopping or holding the job with the command qchkpt.

Restarting a job in the Held state

The qrls command is used to restart the hibernated job. If you were using the tail -f command to watch the
output file, you will see the test program start counting again.

It is possible to use the qalter command to change the name of the checkpoint file associated with a job. This
could be useful if there were several job checkpoints and it restarting the job from an older image was
specified.

Restarting a job in the Completed state

In this case, the job must be moved to the Queued state with the qrerun command. Then the job must go to
the Run state either by action of the scheduler or if there is no scheduler, through using the qrun command.

Acceptance tests

A number of tests were made to verify the functioning of the BLCR implementation. See tests-2.4 for a
description of the testing.

Job id Name User Time Use S
Queue
------------------------- ---------------- --------------- ------
-- - -----
77.jakaa test.sh jsmith 0 Q
batch
>

http://semper/blanks/torque/blcr/acceptance-2.4.php

2.7 Job Exit Status
Once a job under TORQUE has completed, the exit_status attribute will contain the result code returned by
the job script. This attribute can be seen by submitting a qstat -f command to show the entire set of
information associated with a job. The exit_status field is found near the bottom of the set of output lines.

This code can be useful in diagnosing problems with jobs that may have unexpectedly terminated.

If TORQUE was unable to start the job, this field will contain a negative number produced by the pbs_mom.

Otherwise, if the job script was successfully started, the value in this field will be the return value of the
script.

TORQUE Supplied Exit Codes
Name Value Description

JOB_EXEC_OK 0 job exec successful

JOB_EXEC_FAIL1 -1 job exec failed, before files, no retry

JOB_EXEC_FAIL2 -2 job exec failed, after files, no retry

JOB_EXEC_RETRY -3 job execution failed, do retry

JOB_EXEC_INITABT -4 job aborted on MOM initialization

JOB_EXEC_INITRST -5 job aborted on MOM init, chkpt, no migrate

JOB_EXEC_INITRMG -6 job aborted on MOM init, chkpt, ok migrate

JOB_EXEC_BADRESRT -7 job restart failed

JOB_EXEC_CMDFAIL -8 exec() of user command failed

qstat -f (job failure example)
Job Id: 179.host
 Job_Name = STDIN
 Job_Owner = user@host
 job_state = C
 queue = batchq
 server = host
 Checkpoint = u
 ctime = Fri Aug 29 14:55:55 2008
 Error_Path = host:/opt/moab/STDIN.e179
 exec_host = node1/0
 Hold_Types = n
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Fri Aug 29 14:55:55 2008
 Output_Path = host:/opt/moab/STDIN.o179
 Priority = 0
 qtime = Fri Aug 29 14:55:55 2008
 Rerunable = True
 Resource_List.ncpus = 2
 Resource_List.nodect = 1
 Resource_List.nodes = node1
 Variable_List = PBS_O_HOME=/home/user,PBS_O_LOGNAME=user,

PBS_O_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:,P

 PBS_O_WORKDIR=/opt/moab,PBS_O_QUEUE=batchq
 sched hint = Post job file processing error; job 179.host on

Example of exit code from C program:

Notice that the C routine exit passes only the low order byte of its argument. In this case, 256+11 is really
267 but the resulting exit code is only 11 as seen in the output.

$ cat error.c

#include
#include

int
main(int argc, char *argv)
{
 exit(256+11);
}

$ gcc -o error error.c

$ echo ./error | qsub
180.xxx.yyy

$ qstat -f
Job Id: 180.xxx.yyy
 Job_Name = STDIN
 Job_Owner = test.xxx.yyy
 resources_used.cput = 00:00:00
 resources_used.mem = 0kb
 resources_used.vmem = 0kb
 resources_used.walltime = 00:00:00
 job state = C

2.8 Service Jobs
TORQUE service jobs are a special kind of job that is treated differently by TORQUE than normal batch jobs.
TORQUE service jobs are not related to Moab's dynamic service jobs. A TORQUE service job cannot
dynamically grow and shrink in size over time.

Jobs are marked as service jobs at the time they are submitted to Moab or TORQUE. Just like a normal job, a
script file is specified with the job. In a batch job, the contents of the script file are taken by TORQUE and
executed on the compute nodes. For a service job, however, the script file is assumed to respond to certain
command-line arguments. Instead of just executing the script, TORQUE will use these command-line
arguments to start, stop, and check on the status of the job. Listed below are the three command-line
arguments that must be supported by any script submitted as part of a TORQUE service job:

'start' - The script should take this argument and launch its service/workload. The script should remain
executing/running until the service stops.
'stop' - The script should take this argument and stop the service/workload that was earlier started.
'status' - The script should take this argument and return, via standard out, either "running" if the
service/workload is running as expected or "stopped" if the service is not running.

This feature was created with long-running services in mind. The command-line arguments should be familiar
to users who interact with Unix services, as each of the service scripts found in /etc/init.d/ also accept and
respond to the arguments as explained above.

For example, if a user wants to start the Apache 2 server on a compute node, they can use a TORQUE
service job and specify a script which will start, stop, and check on the status of the "httpd" daemon--
possibly by using the already present /etc/init.d/httpd script.

Moab Version Required

If you wish to submit service jobs only through TORQUE, no special version of Moab is required. If you wish
to submit service jobs using Moab's msub, then Moab 5.4 is required.

Submitting Service Jobs

There is a new option to qsub, "-s" which can take either a 'y' or 'n' (yes or no, respectively). When "-s y" is
present, then the job is marked as a service job.

The example above submits a job to TORQUE with a walltime of 100 hours, one node, and it is marked as a
service job. The script "service_job.py" will be used to start, stop, and check the status of the
service/workload started on the compute nodes.

Moab, as of version 5.4, is able to accept the "-s y" option when msub is used for submission. Moab will then
pass this information to TORQUE when the job is migrated.

Submitting Service Jobs in MCM

Submitting a service job in MCM requires the latest Adaptive Computing Suite snapshot of MCM. It also
requires MCM to be started with the "--future=2" option.

Once MCM is started, open the Create Workload window and verify Show Advanced Options is checked.
Notice that there is a Service checkbox that can be selected in the Flags/Options area. Use this to specify
the job is a service job.

Managing Service Jobs

Managing a service job is done much like any other job; only a few differences exist.

Examining the job with qstat -f will reveal that the job has the service = True attribute. Non-service jobs
will not make any mention of the "service" attribute.

qsub -l walltime=100:00:00,nodes=1 -s y service_job.py

http://semper/resources/docs/mwm/21.3dynamicjobs.php
http://semper/resources/docs/mwm/commands/msub.php

Canceling a service job is done with qdel, mjobctl -c, or through any of the GUI's as with any other job.
TORQUE, however, cancels the job by calling the service script with the "stop" argument instead of killing it
directly. This behavior also occurs if the job runs over its wallclock and TORQUE/Moab is configured to cancel
the job.

If a service job completes when the script exits after calling it with "start," or if TORQUE invokes the script
with "status" and does not get back "running," it will not be terminated by using the "stop" argument.

http://semper/resources/docs/mwm/commands/mjobctl.php#cancel

3.1 Adding Nodes
TORQUE can add and remove nodes either dynamically with qmgr or by manually editing the
TORQUE_HOME/server_priv/nodes file. (See Initializing/Configure TORQUE on the server (pbs_server).

3.1.1 Run-Time Node Changes

TORQUE can dynamically add nodes with the qmgr command. For example, the following command will add
node node003:

The above command appends the $TORQUE_HOME/server_priv/nodesfile with:

Nodes can also be removed with a similar command:

Typically, an administrator will want to change the state of a node instead of remove it. See Changing
Node State.

It is highly recommended that node changes be followed by a restart of pbs_server, or just edit the
nodes file manually and restart it.

> qmgr -c "create node node003"

node003

> qmgr -c "delete node node003"

3.2 Nodes Properties
TORQUE can associate properties with nodes to aid in identifying groups of nodes. It's typical for a site to
conglomerate a heterogeneous sets of resources. To identify the different sets, properties can be given to
each node in a set. For example, a group of nodes that has a higher speed network connection could have
the property "ib". TORQUE can set, update, or remove properties either dynamically with qmgr or by
manually editing the nodes file.

3.2.1 Run-Time Node Changes

TORQUE can dynamically change the properties of a node with the qmgr command. For example, note the
following to give node001 the properties of bigmem and dualcore:

To relinquish a stated property, use the "-=" operator.

3.2.2 Manual Node Changes

The properties of each node are enumerated in TORQUE_HOME/server_priv/nodes. The feature(s) must
be in a space delimited list after the node name. For example, to give node001 the properties of bigmem and
dualcore and node002 the properties of bigmem and matlab, edit the nodes file to contain the following:

server_priv/nodes:

For changes to the nodes file to be activated, pbs_server must be restarted.

For a full description of this file, please see the PBS Administrator Guide.

See Also:

2.1 Job Submission for specifying nodes properties for submitted jobs.

> qmgr -c "set node node001 properties = bigmem"
> qmgr -c "set node node001 properties += dualcore"

node001 bigmem dualcore
node002 np=4 bigmem matlab

3.3 Changing Node State
A common task is to prevent jobs from running on a particular node by marking it offline with pbsnodes -o
nodename. Once a node has been marked offline, the scheduler will no longer consider it available for new
jobs. Simply use pbsnodes -c nodename when the node is returned to service.

Also useful is pbsnodes -l which lists all nodes with an interesting state, such as down, unknown, or offline.
This provides a quick glance at nodes that migth be having a problem.

See the pbsnodes manpage for details.

3.4 Host Security
For systems requiring dedicated access to compute nodes (for example, users with sensitive data), TORQUE
prologue and epilogue scripts provide a vehicle to leverage the authenication provided by linux-PAM modules.
(See Appendix G Prologue and Epilogue Scripts for more information.)

To allow only users with running jobs (and root) to access compute nodes, do the following:

Untar contrib/pam_authuser.tar.gz (found in the src tar ball).
Compile pam_authuser.c with make and make install on every compute node.
Edit /etc/system-auth as described in README.pam_authuser, again on every compute node.
Either make a tarball of the epilogue* and prologue* scripts (to preserve the symbolic link) and untar
it in the mom_priv directory, or just copy epilogue* and prologue* to mom_priv/.

The prologue* scripts are Perl scripts that add the user of the job to /etc/authuser. The epilogue* scripts
then remove the first occurrence of the user from /etc/authuser. File locking is employed in all scripts to
eliminate the chance of race conditions. There is also some commented code in the epilogue* scripts, which,
if uncommented, kills all processes owned by the user (using pkill), provided that the user doesn't have
another valid job on the same node.

prologue and epilogue scripts were added to the pam_authuser tarball in version 2.1 of TORQUE.

3.5 Linux Cpuset Support

3.5.1 Cpuset Overview

Linux kernel 2.6 Cpusets are logical, hierarchical groupings of CPUs and units of memory. Once created,
individual processes can be placed within a cpuset. The processes will only be allowed to run/access the
specified CPUs and memory. Cpusets are managed in a virtual file system mounted at /dev/cpuset. New
cpusets are created by simply making new directories. Cpusets gain CPUs and memory units by simply
writing the unit number to files within the cpuset.

3.5.2 Cpuset Support

When started, pbs_mom will create an initial top-level cpuset at /dev/cpuset/torque. This cpuset contains all
CPUs and memory of the host machine. If this "torqueset" already exists, it will be left unchanged to allow
the administrator to override the default behavior. All subsequent cpusets are created within the torqueset.

When a job is started, the jobset is created at /dev/cpuset/torque/$jobid and populated with the CPUs listed
in the exec_host job attribute. Also created are individual tasksets for each CPU within the jobset. This
happens before prologue, which allows it to be easily modified, and it happens on all nodes.

The top-level batch script process is executed in the jobset. Tasks launched through the TM interface (pbsdsh
and PW’s mpiexec) will be executed within the appropriate taskset.

On job exit, all tasksets and the jobset are deleted.

3.5.3 Cpuset Configuration

To configure cpuset:

1. As root, mount the virtual filesystem for cpusets:

This must be done for each MOM that is to use cpusets.

2. Since cpuset usage is a build-time option in TORQUE, you must add -enable-cpuset to your configure
options:

3. Use this configuration for the MOMs across your system.

3.5.4 Cpuset advantages / disadvantages

Presently, any job can request a single CPU and proceed to use everything available in the machine. This is
occasionally done to circumvent policy, but most often is simply an error on the part of the user. Cpuset
support will easily constrain the processes to not interfere with other jobs.

Jobs on larger NUMA systems may see a performance boost if jobs can be intelligently assigned to specific
CPUs. Jobs may perform better if striped across physical processors, or contained within the fewest number
of memory controllers.

TM tasks are constrained to a single core, thus a multi-threaded process could seriously suffer.

mount -t cpuset none /dev/cpuset

./configure --enable-cpuset

3.6 Scheduling Cores
In TORQUE 2.4 and later, users can request specific cores on a node at job submission by using geometry
requests. To use this feature, users specify the procs_bitmap resource request of qsub -l at job submission.

3.6.1 Geometry Request Configuration

A Linux kernel of 2.6, or later, is required to use geometry requests since this feature uses Linux cpusets in
its implementation. In order to use this feature, the cpuset directory has to be mounted. For more
information on how to mount the cpuset directory, see Linux Cpuset Support. If the operating evnironment is
suitable for geometry requests, configure TORQUE with the --enable-geometry-requests option.

TORQUE is configured to install to /home/john/torque and to enable the geometry requests feature.

The geometry request feature uses a subset of the cpusets feature. When you configure TORQUE using
--enable-cpuset and --enable-geometry-requests at the same time, and use -l
procs_bitmap=X, the job will get the requested cpuset. Otherwise, the job is treated as if only --
enable-cpuset was configured.

3.6.2 Geometry Request Usage

Once enabled, users can submit jobs with a geometry request by using the procs_bitmap=<string>
resource request. procs_bitmap requires a numerical string made up of 1's and 0's. A 0 in the bitmap
means the job can not run on the core that matches the 0's index in the bitmap. The index is in reverse order
of the number of cores available. If a job is submitted with procs_bitmap=1011, then the job requests a
node with four free cores, and uses only cores one, two, and four.

The geometry request feature requires a node that has all cores free. A job with a geometry request
cannot run on a node that has cores that are busy, even if the node has more than enough cores
available to run the job.

The job ossl.sh is submitted with a geometry request of 0011.

In the above example, the submitted job can run only on a node that has four cores. When a suitable node is
found, the job runs exclusively on cores one and two.

3.6.3 Geometry Request Considerations

As stated above, jobs with geometry requests require a node with all of its cores available. After the job
starts running on the requested cores, the node cannot run other jobs, even if the node has enough free
cores to meet the requirements of the other jobs. Once the geometry requesting job is done, the node is
available to other jobs again.

> ./configure --prefix=/home/john/torque --enable-geometry-requests

qsub -l procs_bitmap=0011 ossl.sh

3.7 Scheduling GPUs
In TORQUE 2.5.4 and later, users can request GPUs on a node at job submission by specifying a nodes=
resource request using the qsub -l option. The number of GPUs a node has must be specified in the nodes
file. The GPU is then reported in the output of pbsnodes:

The $PBS_GPUFILE has been created to include GPU awareness. The GPU appears as a separate line in
$PBS_GPUFILE and follows this syntax:

If a job were submitted to run on a server called napali (the submit command would look something like:
qsub test.sh -l nodes=1:ppn=2:gpus=1), the $PBS_GPUFILE would contain:

The first two lines signify the job has 2 ppn on napali, and the last line explains that napali has GPU index 0
(the first GPU) to execute on as well. It is left up to the job's owner to make sure that the job executes
properly on the GPU. By default, TORQUE treats GPUs exactly the same as ppn (which corresponds to CPUs).

Using GPUs with NUMA

The pbs_server requires awareness of how the MOM is reporting nodes since there is only one MOM daemon
and multiple MOM nodes. Configure the server_priv/nodes file with the num_numa_nodes and
numa_gpu_node_str attributes. The attribute num_numa_nodes tells pbs_server how many NUMA nodes are
reported by the MOM. If each NUMA node has the same number of GPUs, add the total number of GPUs to
the nodes file. Following is an example of how to configure the nodes file with num_numa_nodes:

This line in the nodes file tells pbs_server there is a host named numa-10 and that it has 12 GPUs and 6
nodes. The pbs_server divides the value of GPUs (12) by the value for num_numa_nodes (6) and determines
there are 2 GPUs per NUMA node.

In this example, the NUMA system is uniform in its configuration of GPUs per node board, but a system does
not have to be configured with the same number of GPUs per node board. For systems with non-uniform GPU
distributions, use the attribute numa_gpu_node_str to let pbs_server know where GPUs are located in the
cluster.

If there are equal numbers of GPUs on each NUMA node, you can specify them with a string. For example, if
there are 3 NUMA nodes and the first has 0 GPUs, the second has 3, and the third has 5, you would add this
to the nodes file entry:

napali
state = free
np = 2
ntype = cluster
status =
rectime=1288888871,varattr=,jobs=,state=free,netload=1606207294,gres=to
1805 2380 2428 1161 3174 3184 3191 3209 3228 3272 3333 20560
32371,uname=Linux napali 2.6.32-25-generic #45-Ubuntu SMP Sat Oct 16
19:52:42 UTC 2010 x86_64,opsys=linux
mom_service_port = 15002
mom_manager_port = 15003
gpus = 1

<hostname>-gpu<index>

napali
napali
napali-gpu0

 numahost gpus=12 num_numa_nodes=6

In this configuration, pbs_server knows it has three MOM nodes and the nodes have 0, 3, and 5 GPUs
respectively. Note that the attribute gpus is not used. The gpus attribute is ignored because the number of
GPUs per node is specifically given.

In TORQUE 3.0.2 or later, qsub supports the mapping of -l gpus=X to -l gres=gpus:X. This allows users
who are using NUMA systems to make requests such as -l ncpus=20,gpus=5 indicating they are not
concerned with the GPUs in relation to the NUMA nodes they request; they only want a total of 20 cores and
5 GPUs.

Torque NVidia GPGPUs

The pbs_mom file can now query for GPU hardware information and report status to the pbs_server.
lgpustatus will appear in pbsnodes output. New commands allow for setting GPU modes and for resetting GPU
ECC error counts. This feature is only available in Torque 2.5.6, 3.0.2, and later.

Torque Configuration

There are three configuration (./configure) options available for use with Nvidia GPGPUs:

--enable-nvidia-gpus
--with-nvml-lib=DIR
--with-nvml-include=DIR

--enable-nvidia-gpus is used to enable the new features for the Nvidia GPGPUs. By default, the
pbs_moms use the nvidia_smi command to interface with the Nvidia GPUs.

./configure --enable-nvidia-gpus

To use the NVML (NVIDIA Management Library) API instead of nvidia-smi, configure TORQUE using --
with-nvml-lib=DIR and --with-nvml-include=DIR. These commands specify the location of the
libnvidia-ml library and the location of the nvml.h include file.

./configure –with-nvml-lib=/usr/lib
--with-nvml-include=/usr/local/cuda/Tools/NVML
server_priv/nodes:
node001 gpus=1
node002 gpus=4
…
pbsnodes -a
node001
 …
 gpus = 1
...

By default, when TORQUE is configured with --enable-nvidia-gpus the $TORQUE_HOME/nodes
file is automatically updated with the correct GPU count for each MOM node.

GPU Modes for Nvidia 260.x driver

0 – Default - Shared mode available for multiple processes
1 – Exclusive - Only one COMPUTE thread is allowed to run on the GPU
2 – Prohibited - No COMPUTE contexts are allowed to run on the GPU

GPU Modes for Nvidia 270.x driver

0 – Default - Shared mode available for multiple processes
1 – Exclusive Thread - Only one COMPUTE thread is allowed to run on the GPU (v260 exclusive)
2 – Prohibited - No COMPUTE contexts are allowed to run on the GPU
3 – Exclusive Process - Only one COMPUTE process is allowed to run on the GPU

gpu_status

 numa_gpu_node_str=0,3,5

root@gpu:~# pbsnodes gpu

New Nvidia GPU Support

qsub allows specifying required compute mode when requesting GPUs

qsub -l nodes=1:ppn=1:gpus=1
qsub -l nodes=1:gpus=1
qsub -l nodes=1:gpus=1:exclusive_thread
qsub -l nodes=1:gpus=1:exclusive_process
qsub –l nodes=1:gpus=1:reseterr
qsub –l nodes=1:gpus=1:reseterr:exclusive_thread (exclusive_thread:reseterr)
qsub –l nodes=1:gpus=1:reseterr:exclusive_process

gpu
...
 gpus = 2
 gpu_status = gpu[1]=gpu_id=0:6:0;gpu_product_name=Tesla

C2050;gpu_display=Disabled;gpu_pci_device_id=6D110DE;gpu_pci_location_i

 gpu_fan_speed=54 %;gpu_memory_total=2687 Mb;gpu_memory_used=74
Mb;gpu_mode=Default;gpu_state=Unallocated;gpu_utilization=96
%;gpu_memory_utilization=10
%;gpu_ecc_mode=Enabled;gpu_single_bit_ecc_errors=0;gpu_double_bit_ecc_e

0;gpu_temperature=88 C,gpu[0]=gpu_id=0:5:0;gpu_product_name=Tesla
C2050;gpu_display=Enabled;gpu_pci_device_id=6D110DE;gpu_pci_location_id

gpu_fan_speed=66 %;gpu_memory_total=2687 Mb;gpu_memory_used=136
Mb;gpu_mode=Default;gpu_state=Unallocated;gpu_utilization=96
%;gpu_memory_utilization=10
%;gpu_ecc_mode=Enabled;gpu_single_bit_ecc_errors=0;
gpu_double_bit_ecc_errors=0;gpu_temperature=86
C,driver_ver=270.41.06,timestamp=Wed May 4 13:00:35
2011

4.1 Queue Configuration
4.1.1 Queue Attributes
4.1.2 Example Queue Configuration
4.1.3 Setting a Default Queue
4.1.4 Mapping a Queue to a Subset of Resources
4.1.5 Creating a Routing Queue

Under TORQUE, queue configuration is accomplished using the qmgr command. With this tool, the first step is
to create the queue. This is accomplished using the create subcommand of qmgr as in the following
example:

Once created, the queue must be configured to be operational. At a minimum, this includes setting the
options started and enabled. Further configuration is possible using any combination of the attributes listed
in what follows.

For boolean attributes, T, t, 1, Y, and y are all synonymous with true, and F, f, 0, N, and n all mean false.

For queue_type, E and R are synonymous with Execution and Routing.

4.1.1 Queue Attributes

acl_groups

Format: <GROUP>[@<HOST>][+<USER>[@<HOST>]]...

Default: ---

Description: Specifies the list of groups which may submit jobs to the queue. If acl_group_enable is set to
true, only users with a primary group listed in acl_groups may utilize the queue.

If the PBSACLUSEGROUPLIST variable is set in the pbs_server environment,
acl_groups checks against all groups of which the job user is a member.

Example:

Used in conjunction with acl_group_enable

acl_group_enable

Format: <BOOLEAN>

Default: FALSE

Description: If TRUE, constrains TORQUE to only allow jobs submitted from groups specified by the
acl_groups parameter.

Example:

acl_group_sloppy

> qmgr -c "create queue batch queue_type=execution"

> qmgr -c "set queue batch acl_groups=staff"
> qmgr -c "set queue batch acl_groups+=ops@h2"
> qmgr -c "set queue batch acl_groups+=staff@h3"

qmgr -c "set queue batch acl_group_enable=true"

Format: <BOOLEAN>

Default: FALSE

Description: If TRUE, acl_groups will be checked against all groups of which the job user is a member.

Example: ---

acl_hosts

Format: <HOST>[+<HOST>]...

Default: ---

Description: Specifies the list of hosts that may submit jobs to the queue.

Example:

Used in conjunction with acl_host_enable.

acl_host_enable

Format: <BOOLEAN>

Default: FALSE

Description: If TRUE, constrains TORQUE to only allow jobs submitted from hosts specified by the
acl_hosts parameter.

Example:

acl_logic_or

Format: <BOOLEAN>

Default: FALSE

Description: If TRUE, user and group acls are logically OR'd together, meaning that either acl may be met
to allow access. If false or unset, then both acls are AND'd, meaning that both acls must be
satisfied.

Example:

acl_users

Format: <USER>[@<HOST>][+<USER>[@<HOST>]]...

Default: ---

Description: Specifies the list of users who may submit jobs to the queue. If acl_user_enable is set to
TRUE, only users listed in acl_users may use the queue

Example:

qmgr -c "set queue batch acl_hosts=h1+h2+h3"

qmgr -c "set queue batch acl_host_enable=true"

qmgr -c "set queue batch acl_logic_or=true"

> qmgr -c "set queue batch acl_users=john"
> qmgr -c "set queue batch acl_users+=steve@h2"
> qmgr -c "set queue batch acl_users+=stevek@h3"

Used in conjunction with acl_user_enable.

acl_user_enable

Format: <BOOLEAN>

Default: FALSE

Description: If TRUE, constrains TORQUE to only allow jobs submitted from users specified by the
acl_users parameter.

Example:

disallowed_types

Format: <type>[+<type>]...

Default: ---

Description: Specifies classes of jobs that are not allowed to be submitted to this queue. Valid types are
interactive, batch, rerunable, nonrerunable, fault_tolerant (as of version 2.4.0 and later),
fault_intolerant (as of version 2.4.0 and later), and job_array (as of version 2.4.1 and later).

Example:

enabled

Format: <BOOLEAN>

Default: FALSE

Description: Specifies whether the queue accepts new job submissions.

Example:

keep_completed

Format: <INTEGER>

Default: 0

Description: Specifies the number of seconds jobs should be held in the Completed state after exiting.

Example:

kill_delay

Format: <INTEGER>

Default: 2

Description: Specifies the number of seconds between sending a SIGTERM and a SIGKILL to a job being
cancelled.

Example:

qmgr -c "set queue batch acl_user_enable=true"

qmgr -c "set queue batch disallowed_types = interactive"
qmgr -c "set queue batch disallowed_types += job_array"

qmgr -c "set queue batch enabled=true"

qmgr -c "set queue batch keep_completed=120"

qmgr -c "set queue batch kill_delay=30"

max_queuable

Format: <INTEGER>

Default: unlimited

Description: Specifies the maximum number of jobs allowed in the queue at any given time (includes idle,
running, and blocked jobs).

Example:

max_running

Format: <INTEGER>

Default: unlimited

Description: Specifies the maximum number of jobs in the queue allowed to run at any given time.

Example:

max_user_queuable

Format: <INTEGER>

Default: unlimited

Description: Specifies the maximum number of jobs, per user, allowed in the queue at any given time
(includes idle, running, and blocked jobs). Version 2.1.3 and greater.

Example:

max_user_run

Format: <INTEGER>

Default: unlimited

Description: Specifies the maximum number of jobs, per user, in the queue allowed to run at any given
time.

Example:

priority

Format: <INTEGER>

Default: 0

Description: Specifies the priority value associated with the queue.

Example:

queue_type

Format: one of e, execution, r, or route

qmgr -c "set queue batch max_queuable=20"

qmgr -c "set queue batch max_running=20"

qmgr -c "set queue batch max_user_queuable=20"

qmgr -c "set queue batch max_user_run=10"

qmgr -c "set queue batch priority=20"

Default: ---

Description: Specifies the queue type.

This value must be explicitly set for all queues.

Example:

resources_available

Format: <STRING>

Default: ---

Description: Specifies to cumulative resources available to all jobs running in the queue.

Example:

pbs_server must be restarted for changes to take effect. Also, resources_available is
constrained by the smallest of queue.resources_available and the
server.resources_available.

resources_default

Format: <STRING>

Default: N/A

Description: Specifies default resource requirements for jobs submitted to the queue.

Example:

resources_max

Format: <STRING>

Default: N/A

Description: Specifies the maximum resource limits for jobs submitted to the queue.

Example:

resources_min

Format: <STRING>

Default: N/A

Description: Specifies the minimum resource limits for jobs submitted to the queue.

Example:

qmgr -c "set queue batch queue_type=execution"

qmgr -c "set queue batch resources_available.nodect=20"

qmgr -c "set queue batch resources_default.walltime=3600"

qmgr -c "set queue batch resources_max.nodect=16"

qmgr -c "set queue batch resources_min.nodect=2"

route_destinations

Format: <queue>[@<host>][+<queue>[@<host>]]...

Default: N/A

Description: Specifies the potential destination queues for jobs submitted to the associated routing queue.

This attribute is only valid for routing queues.

Example:

started

Format: <BOOLEAN>

Default: FALSE

Description: Specifies whether jobs in the queue are allowed to execute.

Example:

Resources may include one or more of the following: arch, mem, nodes, ncpus, nodect, procct,
pvmem, and walltime.

Assigning Queue Resource Limits

Administrators can use resources limits to help direct what kind of jobs go to different queues. There are four
queue attributes where resource limits can be set: resources_available, resources_default,
resources_max and resources_min. The list of supported resources that can be limited with these attributes
are arch, mem, ncpus, nodect, nodes, procct, pvmem, vmem, and walltime.

Resource Format Description

arch string Specifies the administrator defined system architecture required.

mem size Amount of physical memory used by the job. (Ignored on Darwin, Digital Unix,
Free BSD, HPUX 11, IRIX, NetBSD, and SunOS. Also ignored on Linux if number
of nodes is not 1. Not implemented on AIX and HPUX 10.)

ncpus integer An artifact of job centric mode is that if a job does not have an attribute set, the
server and routing queue defaults are not applied when queue resource limits are
checked. Consequently, a job that requests 32 nodes (not ncpus=32) will not be
checked against a min_resource.ncpus limit.

nodect integer Sets the number of nodes available. By default, TORQUE will set the number of
nodes available to the number of nodes listed in the
$TORQUE_HOME/server_priv/nodes file. nodect can be set to be greater than or
less than that number. Generally, it is used to set the node count higher than the
number of physical nodes in the cluster.

nodes integer Number of nodes.

procct integer procct sets limits on the total number of execution slots (procs) allocated to a
job. The number of procs is calculated by summing the products of all node and

> qmgr -c "set queue route route_destinations=fast"
> qmgr -c "set queue route route_destinations+=slow"
> qmgr -c "set queue route route_destinations+=medium@hostname"

qmgr -c "set queue batch started=true"

ppn entries for a job. For example qsub -l nodes=2:ppn=2+3:ppn=4 job.sh
would yield a procct of 16. 2*2 (2:ppn=2) + 3*4 (3:ppn=4).

pvmem size Amount of virtual memory used by any single process in a job.

vmem size Amount of virtual memory used by all concurrent processes in the job.

walltime seconds, or
[[HH:]MM:]SS

Amount of real time during which a job can be in a running state.

4.1.2 Example Queue Configuration

The following series of qmgr commands will create and configure a queue named batch:

This queue will accept new jobs and, if not explicitly specified in the job, will assign a nodecount of 1 and a
walltime of 1 hour to each job.

4.1.3 Setting a Default Queue

By default, a job must explicitly specify which queue it is to run in. To change this behavior, the server
parameter default_queue may be specified as in the following example:

4.1.4 Mapping a Queue to a Subset of Resources

TORQUE does not currently provide a simple mechanism for mapping queues to nodes. However, schedulers
such as Moab and Maui can provide this functionality.

The simplest method is using default_resources.neednodes on an execution queue, setting it to a particular
node attribute. Maui/Moab will use this information to ensure that jobs in that queue will be assigned nodes
with that attribute. For example, suppose we have some nodes bought with money from the chemistry
department, and some nodes paid by the biology department.

This example does not preclude other queues from accessing those nodes. One solution is to use some
other generic attribute with all other nodes and queues.

More advanced configurations can be made with standing reservations and QoSes.

4.1.5 Creating a Routing Queue

A routing queue will steer a job to a destination queue based on job attributes and queue constraints. It is set
up by creating a queue of queue_type Route with a route_destinations attribute set, as in the following

qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"

qmgr -c "set server default_queue=batch"

$TORQUE_HOME/server_priv/nodes:
node01 np=2 chem
node02 np=2 chem
node03 np=2 bio
node04 np=2 bio

qmgr:
set queue chem resources_default.neednodes=chem
set queue bio resources_default.neednodes=bio

http://www.adaptivecomputing.com/resources/docs/mwm
http://www.adaptivecomputing.com/resources/docs/maui

example.

In this example, the compute nodes are dual processors and default walltimes are set according to the
number of processors/nodes of a job. Jobs with 32 nodes (63 processors) or more will be given a default
walltime of 6 hours. Also, jobs with 16-31 nodes (31-62 processors) will be given a default walltime of 12
hours. All other jobs will have the server default walltime of 24 hours.

The ordering of the route_destinations is important. In a routing queue, a job is assigned to the first possible
destination queue based on the resources_max, resources_min, acl_users, and acl_groups attributes. In the
preceding example, the attributes of a single processor job would first be checked against the reg_64 queue,
then the reg_32 queue, and finally the reg queue.

Adding the following settings to the earlier configuration elucidates the queue resource requirements:

The time of enforcement of server and queue defaults is important in this example. TORQUE applies server
and queue defaults differently in job centric and queue centric modes. For job centric mode, TORQUE waits to
apply the server and queue defaults until the job is assigned to its final execution queue. For queue centric
mode, it enforces server defaults before it is placed in the routing queue. In either mode, queue defaults
override the server defaults. TORQUE defaults to job centric mode. To set queue centric mode, set
queue_centric_limits, as in what follows:

An artifact of job centric mode is that if a job does not have an attribute set, the server and routing queue
defaults are not applied when queue resource limits are checked. Consequently, a job that requests 32 nodes

qmgr
routing queue
create queue route
set queue route queue_type = Route
set queue route route_destinations = reg_64
set queue route route_destinations += reg_32
set queue route route_destinations += reg
set queue route enabled = True
set queue route started = True

queue for jobs using 1-15 nodes
create queue reg
set queue reg queue_type = Execution
set queue reg resources_min.ncpus = 1
set queue reg resources_min.nodect = 1
set queue reg resources_default.ncpus = 1
set queue reg resources_default.nodes = 1
set queue reg enabled = True
set queue reg started = True

queue for jobs using 16-31 nodes
create queue reg_32
set queue reg_32 queue_type = Execution
set queue reg_32 resources_min.ncpus = 31
set queue reg_32 resources_min.nodes = 16
set queue reg_32 resources_default.walltime = 12:00:00
set queue reg_32 enabled = True
set queue reg_32 started = True

qmgr
set queue reg resources_max.ncpus = 30
set queue reg resources_max.nodect = 15

set queue reg_16 resources_max.ncpus = 62
set queue reg_16 resources_max.ncpus = 31

qmgr
set server queue_centric_limits = true

(not ncpus=32) will not be checked against a min_resource.ncpus limit. Also, for the preceding example, a
job without any attributes set will be placed in the reg_64 queue, since the server ncpus default will be
applied after the job is assigned to an execution queue.

Routine queue defaults are NOT applied to job attributes in versions 2.1.0 and before.

If the error message 'qsub: Job rejected by all possible destinations' is reported when
submitting a job, it may be necessary to add queue location information, (i.e., in the routing queue's
route_destinations attribute, change 'batch ' to 'batch@localhost ').

See Also

Server Parameters
qalter - command which can move jobs from one queue to another

4.2 Server High Availability
The option of running TORQUE in a redundant or high availability mode has been implemented. This means
that there can be multiple instances of the server running and waiting to take over processing in the event
that the currently running server fails.

The high availability feature is available in the 2.3 and later versions of TORQUE. TORQUE 2.4 included
several enhancements to high availablilty.

Redundant Server Host Machines

High availability enables TORQUE to continue running even if pbs_server is brought down. This is done by
running multiple copies of pbs_server which have their torque/server_priv directory mounted on a shared
file system. The torque/server_name must include the host names of all nodes that run pbs_server. All MOM
nodes also must include the host names of all nodes running pbs_server in their torque/server_name file.
The syntax of the torque/server_name is a comma delimited list of host names.

torque/server_name example:

All instances of pbs_server need to be started with the --ha command line option that allows the servers to
run at the same time. Only the first server to start will complete the full startup. The second server to start
will block very early in the startup when it tries to lock the file torque/server_priv/server.lock. When the
second server cannot obtain the lock, it will spin in a loop and wait for the lock to clear. The sleep time
between checks of the lock file is one second.

Notice that not only can the servers run on independent server hardware, there can also be multiple
instances of the pbs_server running on the same machine. This was not possible before as the second one
to start would always write an error and quit when it could not obtain the lock.

Because the file server_priv/serverdb is created in a way which is not compatible between hardware
architectures, the machines that are running pbs_server in high-availability mode must be of similar
architecture. For example, a 32-bit machine is unable to read the server_priv/serverdb file of a 64-bit
machine. Therefore, when choosing hardware, verify all servers are of the same architecture.

Enhanced High Availability

The default high availability configuration of TORQUE 2.4 is backward compatible with version 2.3, but an
enhanced high availability option is available with version 2.4. The enhanced version in 2.4 fixes some
shortcomings in the default configuration and is more robust. The lock file mechanism used to trigger a fail-
over in TORQUE 2.3 works correctly only if the primary pbs_server is taken down gracefully, and releases the
lock on the file being used as the semaphore. If the server crashes, the lock stays in place and the backup
server will not start unless the lock is manually removed by the administrator. With 2.4 enhanced high
availability the reliance on the file system is bypassed with a much more reliable mechanism.

In order to use enhanced high availability with TORQUE 2.4, TORQUE must be configured using the --
enable-high-availability option (in addition to all other configuration options you specify).

In the above example, TORQUE installs to the /usr/var/torque directory and is configured to use the high
availability features.

Once TORQUE has been compiled and installed, it is launched the same way as with TORQUE 2.3; start each
instance of pbs_server with the --ha option.

In addition to the new fail-over mechanism, three server options have been added to help manage enhanced
high availability in TORQUE 2.4. The server parameters are lock_file, lock_file_update_time, and
lock_file_check_time.

host1,host2,host3

> ./configure --prefix=/usr/var/torque --enable-high-availability

The lock_file option allows the administrator to change the location of the lock file. The default location is
torque/server_priv. If the lock_file option is used, the new location must be on the shared partition so all
servers have access.

The lock_file_update_time and lock_file_check_time parameters are used by the servers to determine if the
primary server is active. The primary pbs_server will update the lock file based on the lock_file_update_time
(default value of 3 seconds). All backup pbs_servers will check the lock file as indicated by the
lock_file_check_time parameter (default value of 9 seconds). The lock_file_update_time must be less than
the lock_file_check_time. When a failure occurs, the backup pbs_server takes up to the lock_file_check_time
value to take over.

In the above example, after the primary pbs_server goes down, the backup pbs_server takes up to 5
seconds to take over. It takes additional time for all MOMs to switch over to the new pbs_server.

The clock on the primary and redundant servers must be synchronized in order for high availability to
work. Use a utility such as NTP to ensure your servers have a synchronized time.

Enhanced High Availability with Moab

When TORQUE is run with an external scheduler such as Moab, and the pbs_server is not running on the
same host as Moab, pbs_server needs to know where to find the scheduler. To do this, use the following
syntax (the port is required and the default is 15004):

If Moab is running in HA mode, add a -l option for each redundant server.

The root user of each Moab host must be added to the operators and managers lists of the server. This
enables Moab to execute root level operations in TORQUE.

How Commands Select the Correct Server Host

The various commands that send messages to pbs_server usually have an option of specifying the server
name on the command line, or if none is specified will use the default server name. The default server name
comes either from the environment variable PBS_DEFAULT or from the file torque/server_name.

When a command is executed and no explicit server is mentioned, an attempt is made to connect to the first
server name in the list of hosts from PBS_DEFAULT or torque/server_name. If this fails, the next server
name is tried. If all servers in the list are unreachable, an error is returned and the command fails.

Note that there is a period of time after the failure of the current server during which the new server is
starting up where it is unable to process commands. The new server must read the existing configuration and
job information from the disk, so the length of time that commands cannot be received varies. Commands
issued during this period of time might fail due to timeouts expiring.

Job Names

One aspect of this enhancement is in the construction of job names. Job names normally contain the name of
the host machine where pbs_server is running. When job names are constructed, only the first name from
the server specification list is used in building the job name.

Persistence of the pbs_server Process

The system adminstrator must ensure that pbs_server continues to run on the server nodes. This could be
as simple as a cron job that counts the number of pbs_server's in the process table and starts some more
if needed.

> qmgr -c "set server lock_file_check_time=5"

> pbs_server --ha -l <moabhost:port>

> pbs_server --ha -l <moabhost1:port> -l <moabhost2:port>

High Availability of the NFS Server

One consideration of this implemention is that it depends on NFS file system also being redundant. NFS can
be set up as a redundant service. See the following.

Setting Up A Highly Available NFS Server
Making NFS Work On Your Network
Sourceforge Linux NFS FAQ
NFS v4 main site

There are also other ways to set up a shared file system. See the following.

Red Hat Global File System
Data sharing with a GFS storage cluster

Example Setup of High Availability

1. The machines running pbs_server must have access to a shared server_priv/ directory (usually an
NFS share on a MoM).

2. All MoMs must have the same content in their server_name file. This can be done manually or via an
NFS share. The server_name file contains a comma-delimited list of the hosts that run pbs_server.

3. The machines running pbs_server must be listed in acl_hosts.

4. Start pbs_server with the --ha option.

List of all servers running pbs_server
server1,server2

> qmgr -c "set server acl_hosts += server1"
> qmgr -c "set server acl_hosts += server2"

[root@server1]$ pbs_server --ha

[root@server2]$ pbs_server --ha

http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://www.networkcomputing.com/netdesign/nfs1.html
http://nfs.sourceforge.net/
http://www.nfsv4.org/
http://www.redhat.com/gfs/
http://www.redhat.com/magazine/006apr05/features/gfs/

5.1 Integrating Schedulers for TORQUE
Selecting the cluster scheduler is an important decision and significantly affects cluster utilization,
responsiveness, availability, and intelligence. The default TORQUE scheduler, pbs_sched, is very basic and
will provide poor utilization of your cluster's resources. Other options, such as Maui Scheduler or Moab
Workload Manager, are highly recommended. If using Maui or Moab, refer to the Moab-PBS Integration
Guide. If using pbs_sched, simply start the pbs_sched daemon.

If you are installing Moab Cluster Suite, TORQUE and Moab were configured at installation for
interoperability and no further action is required.

http://www.adaptivecomputing.com/resources/docs/maui
http://www.adaptivecomputing.com/resources/docs/mwm
http://www.adaptivecomputing.com/resources/docs/mwm
http://www.clusterresources.com/products/moab-cluster-suite.php

6.1 SCP Setup
To use scp based data management, TORQUE must be authorized to migrate data to any of the compute
nodes. If this is not already enabled within the cluster, this can be achieved with the process described
below. This process enables uni-directional access for a particular user from a source host to a destination
host.

These directions were written using OpenSSH version 3.6 and may not transfer correctly to older
versions.

6.1.1 - Generate SSH Key on Source Host

On the source host as the transfer user, execute the following:

This will prompt for a passphrase (optional) and create two files: id_rsa and id_rsa.pub inside ~/.ssh/.

6.1.2 - Copy Public SSH Key to Each Destination Host

Transfer public key to each destination host as the transfer user:

Easy Key Copy:

Manual Steps to Copy Keys:

Create an authorized_keys file on each destination host.

If the .ssh directory does not exist, create it with 700 privileges (mkdir .ssh;chmod 700 .ssh)

6.1.3 - Configure the SSH Daemon on Each Destination Host

Some configuration of the ssh daemon may be required on the destination host. (Because this is not always
the case, skip to step 4 and test the changes made to this point. If the tests fail, proceed with this step and
then try testing again.) Typically, this is done by editing the /etc/ssh/sshd_config file (root access
needed). To verify correct configuration, see that the following attributes are set (not commented):

If configuration changes were required, the ssh daemon will need to be restarted (root access needed):

6.1.4 - Validating Correct SSH Configuration

> ssh-keygen -t rsa

ssh-copy-id [-i [identity_file]] [user@]machine

> scp ~/.ssh/id_rsa.pub destHost:~ (enter password)

> ssh destHost (enter password)
> cat id_rsa.pub >> .ssh/authorized_keys

> chmod 700 .ssh/authorized_keys

RSAAuthentication yes
PubkeyAuthentication yes

> /etc/init.d/sshd restart

http://www.openssh.org/

If all is properly configured, the following command issued on the source host should succeed and not prompt
for a password:

Note that if this is your first time accessing destination from source, it may ask you if you want to add the
fingerprint to a file of known hosts. If you specify yes, this message should no longer appear and should not
interfere with scp copying via TORQUE. Also, it is important that the full hostname appear in the
known_hosts file. To do this, use the full hostname for destHost, as in machine.domain.org instead of just
machine.

6.1.5 - Enabling Bi-Directional SCP Access

The preceding steps allow source access to destination without prompting for a password. The reverse,
however, is not true. Repeat the steps, but this time using the destination as the source, etc. to enable bi-
directional SCP access (i.e. source can send to destination and destination can send to source without
password prompts.)

6.1.6 - Compile TORQUE to Support SCP

In TORQUE 2.1 and later, SCP is the default remote copy protocol. This step is only necessary for
earlier versions.

TORQUE must be re-configured (and then rebuilt) to use SCP by passing in the --with-scp flag to the
configure script:

If special scp flags are required in your local setup, these can be specified using the rcpcmd
parameter.

Troubleshooting

If, after following all of these steps, TORQUE is still having problems transferring data with scp, set the
PBSDEBUG environment variable and restart the pbs_mom for details about copying. Also check the MOM log
files for more details.

> scp destHost:/etc/motd /tmp

> ./configure --prefix=xxx --with-scp
> make

6.2 NFS and Other Networked Filesystems

6.2.1 TORQUE Data Management

When a batch job starts, its stdin file (if specified) is copied from the submission directory on the remote
submission host. This file is placed in the $PBSMOMHOME directory on the mother superior node (i.e.,
/usr/spool/PBS/spool). As the job runs, stdout and stderr files are generated and placed in this directory
using the naming convention $JOBID.OU and $JOBID.ER.

When the job completes, the MOM copies the files into the directory from which the job was submitted. By
default, this file copying will be accomplished using a remote copy facility such as rcp or scp.

If a shared file system such as NFS, DFS, or AFS is available, a site can specify that the MOM should take
advantage of this by specifying the $usecp directive inside the MOM configuration file (located in the
$PBSMOMHOME/mom_priv directory) using the following format $usecp <HOST>:<SRCDIR> <DSTDIR>

HOST can be specified with a leading wildcard ('*') character. The following example demonstrates this
directive:

If for any reason the MOM daemon is unable to copy the output or error files to the submission directory,
these files are instead copied to the undelivered directory also located in $PBSMOMHOME.

mom_priv/config
/home is NFS mounted on all hosts

$usecp *:/home /home

submission hosts in domain fte.com should map '/data' directory on
submit host to
'/usr/local/data' on compute host

$usecp *.fte.com:/data /usr/local/data

6.3 File Stage-In/Stage-Out
File staging requirements are specified using the stagein and stageout directives of the qsub command.
Stagein requests occur before the job starts execution, while stageout requests happen after a job completes.

On completion of the job, all staged-in and staged-out files are removed from the execution system. The
file_list is in the form local_file@hostname:remote_file[,...] regardless of the direction of the copy. The
name local_file is the name of the file on the system where the job executed. It may be an absolute path or
relative to the home directory of the user. The name remote_file is the destination name on the host
specified by hostname. The name may be absolute or relative to the user's home directory on the destination
host. The use of wildcards in the file name is not recommended.

The file names map to a remote copy program (rcp/scp/cp, depending on configuration) called on the
execution system in the following manner:

For stagein: rcp/scp hostname:remote_file local_file
For stageout: rcp/scp local_file hostname:remote_file

Examples

stage /home/john/input_source.txt from node13.fsc to
/home/john/input_destination.txt on master compute node
> qsub -l nodes=1,walltime=100 -W
stagein=input_source.txt@node13.fsc:/home/john/input_destination.txt

stage /home/bill/output_source.txt on master compute node to
/tmp/output_destination.txt on node15.fsc
> qsub -l nodes=1,walltime=100 -W
stageout=/tmp/output_source.txt@node15.fsc:/home/bill/output_destinatio

$ fortune >xxx;echo cat xxx|qsub -W stagein=xxx@`hostname`:xxx
199.myhost.mydomain
$ cat STDIN*199
Anyone who has had a bull by the tail knows five or six more things
than someone who hasn't.
 -- Mark Twain

7.1 MPI (Message Passing Interface) Support

7.1.1 MPI (Message Passing Interface) Overview

A message passing library is used by parallel jobs to augment communication between the tasks distributed
across the cluster. TORQUE can run with any message passing library and provides limited integration with
some MPI libraries.

7.1.2 MPICH

One of the most popular MPI libraries is MPICH available from Argonne National Lab. If using this release,
you may want to consider also using the mpiexec tool for launching MPI applications. Support for mpiexec
has been integrated into TORQUE.

MPIExec Overview

mpiexec is a replacement program for the script mpirun, which is part of the mpich package. It is used to
initialize a parallel job from within a PBS batch or interactive environment. mpiexec uses the task manager
library of PBS to spawn copies of the executable on the nodes in a PBS allocation.

Reasons to use mpiexec rather than a script (mpirun) or an external daemon (mpd):

Starting tasks with the task manager (TM) interface is much faster than invoking a separate rsh * once
for each process.
Resources used by the spawned processes are accounted correctly with mpiexec, and reported in the
PBS logs, because all the processes of a parallel job remain under the control of PBS, unlike when
using mpirun-like scripts.
Tasks that exceed their assigned limits of CPU time, wallclock time, memory usage, or disk space are
killed cleanly by PBS. It is quite hard for processes to escape control of the resource manager when
using mpiexec.
You can use mpiexec to enforce a security policy. If all jobs are forced to spawn using mpiexec and
the PBS execution environment, it is not necessary to enable rsh or ssh access to the compute nodes
in the cluster.

See the mpiexec homepage for more information.

MPIExec Troubleshooting

Although problems with mpiexec are rare, if issues do occur, the following steps may be useful:

determine current version using mpiexec --version and review the change log available on the MPI
homepage to determine if the reported issue has already been corrected
send email to the mpiexec mailing list at mpiexec@osc.edu
browse the mpiexec user list archives for similar problems and resolutions
read the FAQ contained in the README file and the mpiexec man pages contained within the mpiexec
distribution
increase the logging of mpiexec operation with mpiexec --verbose (reports messages to stderr)
increase logging of the master and slave resource manager execution daemons associated with the job
(with TORQUE, use $loglevel to 5 or higher in $TORQUEROOT/mom_priv/config and look for 'tm'
messages after associated join job messages).
use tracejob (included with TORQUE) or qtracejob (included with OSC's pbstools package) to
isolate failures within the cluster.
if the message 'exec: Error: get_hosts: pbs_connect: Access from host not allowed, or
unknown host' appears, this indicates that mpiexec cannot communicate with the pbs_server
daemon. In most cases, this indicates that the '$TORQUEROOT/server_name' file points to the wrong
server or the node cannot resolve the server's name. The qstat command can be run on the node to
test this.

General MPI Troubleshooting

When using MPICH, some sites have issues with orphaned MPI child processes remaining on the system after

http://www-unix.mcs.anl.gov/mpi
http://www.mcs.anl.gov/research/projects/mpi/mpich1/
http://www.anl.gov/
http://www.osc.edu/~pw/mpiexec
http://www.osc.edu/~pw/mpiexec
http://www.osc.edu/~djohnson/mpiexec/index.php#Changes
http://www.osc.edu/~djohnson/mpiexec/index.php
http://www.osc.edu/~djohnson/mpiexec/index.php
http://www.open-mpi.org/community/lists/users/

the master MPI process has been terminated. To address this, TORQUE epilogue scripts can be created that
properly clean up the orphaned processes.

7.1.3 MPICH-VMI

MPICH-VMI is a highly-optimized open-source message passing layer available from NCSA. Additional
information can be found in the VMI tutorial.

7.1.4 Open MPI

Open MPI is a new MPI implementation that combines technologies from multiple projects to create the best
possible library. It supports the TM interface for intergration with TORQUE. More inforamtion is available in
the FAQ.

http://vmi.ncsa.uiuc.edu/
http://vmi.ncsa.uiuc.edu/VMISendRecvTutorial.php
http://www.open-mpi.org/
http://www.open-mpi.org/faq

8.1 Monitoring Resources

8.1.1 Resource Overview

A primary task of any resource manager is to monitor the state, health, configuration, and utilization of
managed resources. TORQUE is specifically designed to monitor compute hosts for use in a batch
environment. TORQUE is not designed to monitor non-compute host resources such as software licenses,
networks, file systems, and so forth, although these resources can be integrated into the cluster using some
scheduling systems.

With regard to monitoring compute nodes, TORQUE reports about a number of attributes broken into three
major categories:

configuration
utilization
state

8.1.1.1 Configuration

Configuration includes both detected hardware configuration and specified batch attributes.

Attribute Description Details

Architecture
(arch)

operating
system of the
node

The value reported is a derivative of the operating system installed.

Node
Features
(properties)

arbitrary
string
attributes
associated
with the node

No node features are specified by default. If required, they are set using the
nodes file located in the TORQUE_HOME/server_priv directory. They may
specify any string and are most commonly used to allow users to request
certain subsets of nodes when submitting jobs.

Local Disk
(size)

configured
local disk

By default, local disk space is not monitored. If the MOM configuration size
parameter is set, TORQUE will report, in kilobytes, configured disk space within
the specified directory.

Memory
(physmem)

local
memory/RAM

Local memory/RAM is monitored and reported in kilobytes.

Processors
(ncpus/np)

real/virtual
processors

The number of processors detected by TORQUE is reported via the ncpus
attribute. However, for scheduling purposes, other factors are taken into
account. In its default configuration, TORQUE operates in dedicated mode
with each node possessing a single virtual processor. In dedicated mode, each
job task will consume one virtual processor and TORQUE will accept workload
on each node until all virtual processors on that node are in use. While the
number of virtual processors per node defaults to 1, this may be configured
using the nodes file located in the TORQUE_HOME/server_priv directory. An
alternative to dedicated mode is timeshared mode. If TORQUE's timeshared
mode is enabled, TORQUE will accept additional workload on each node until
the node's maxload limit is reached.

Swap
(totmem)

virtual
memory/Swap

Virtual memory/Swap is monitored and reported in kilobytes.

8.1.1.2 Utilization

Utilization includes information regarding the amount of node resources currently in use as well as
information about who or what is consuming it.

Attribute Description Details

Disk (size) local disk
availability

By default, local disk space is not monitored. If the MOM configuration size
parameter is set, TORQUE will report configured and currently available disk
space within the specified directory in kilobytes.

Memory
(availmem)

real
memory/RAM

Available real memory/RAM is monitored and reported in kilobytes.

Network
(netload)

local network
adapter
usage

Reports total number of bytes transferred in or out by the network adapter.

Processor
Utilization
(loadave)

node's cpu
load average

Reports the node's 1 minute bsd load average.

8.1.1.3 Node States

State information includes administrative status, general node health information, and general usage status.

Attribute Description Details

Idle Time
(idletime)

time since local
keyboard/mouse activity
has been detected

Time in seconds since local keyboard/mouse activity has been
detected.

State
(state)

monitored/admin node state A node can be in one or more of the following states:

busy - node is full and will not accept additional work
down - node is failing to report, is detecting local failures
with node configuration or resources, or is marked down by
an administrator
free - node is ready to accept additional work
job-exclusive - all available virtual processors are assigned
to jobs
job-sharing - node has been allocated to run multiple
shared jobs and will remain in this state until jobs are
complete
offline - node has been instructed by an admin to no longer
accept work
reserve - node has been reserved by the server
time-shared - node always allows multiple jobs to run
concurrently
unknown - node has not been detected

9.1 Accounting Records
TORQUE maintains accounting records for batch jobs in the following directory:

$TORQUEROOT/server_priv/accounting/<TIMESTAMP>

$TORQUEROOT defaults to /usr/spool/PBS and <TIMESTAMP> is in the form YYYYMMDD. These records
include events, timestamps, and information on resources requested and used.

Records for four different event types are produced and are described in the following table.

Record
Marker

Record
Type Description

D delete job has been deleted

E exit job has exited (either successfully or unsuccessfully)

Q queue job has been submitted/queued

S start an attempt to start the job has been made (if the job fails to properly start, it may
have multiple job start records)

Accounting Variables

The following table offers accounting variable descriptions. Descriptions for accounting variables not indicated
in the table, particularly those prefixed with Resources_List, are available at 2.1 Job Submission.

Variable Description

ctime time job was created

etime time job became eligible to run

qtime time job was queued

start time job started to run

A sample record in this file can look like the following:

06/06/2005
14:04:25;D;408.ign1.zeta2.org;requestor=guest@ign1.zeta2.org
06/06/2005 14:04:35;Q;409.ign1.zeta2.org;queue=batch
06/06/2005 14:04:44;Q;410.ign1.zeta2.org;queue=batch
06/06/2005 14:06:06;S;407.ign1.zeta2.org;user=guest group=guest
jobname=STDIN
queue=batch ctime=1118087915 qtime=1118087915 etime=1118087915
start=1118088366
exec_host=ign1.zeta2.org/0 Resource_List.neednodes=ign1.zeta2.org
Resource_List.nodect=1 Resource_List.nodes=1
Resource_List.walltime=00:16:40
06/06/2005
14:07:17;D;407.ign1.zeta2.org;requestor=guest@ign1.zeta2.org
06/06/2005 14:07:17;E;407.ign1.zeta2.org;user=guest group=guest
jobname=STDIN
queue=batch ctime=1118087915 qtime=1118087915 etime=1118087915
start=1118088366
exec_host=ign1.zeta2.org/0 Resource_List.nodect=1
Resource_List.nodes=1
Resource_List.walltime=00:16:40 session=6365 end=1118088437
Exit_status=271
resources_used.cput=00:00:00 resources_used.mem=3068kb
resources_used.vmem=16080kb

resources_used.walltime=00:01:11

10.1 Job Logging
New in TORQUE 2.5.3 is the ability to log job information for completed jobs. The information stored in the
log file is the same information produced with the command qstat -f. The log file data is stored using an XML
format. Data can be extracted from the log using the utility showjobs found in the contrib/ directory of the
TORQUE source tree. Custom scripts that can parse the XML data can also be used.

10.1.1 Job Log Location and Name

The job log is kept at $TORQUE_HOME/job_logs. The naming convention for the job log is the same as for the
server log or MOM log. The log name is created from the current year/month/day . For example, if today's
date is 26 October, 2010 the log file is named 20101026. A new log file is created each new day that data is
written to the log.

10.1.2 Enabling Job Logs

There are five new server parameters used to enable job logging. These parameters control what information
is stored in the log and manage the log files.

record_job_info - This must be set to true in order for job logging to be enabled. If not set to true,
the remaining server parameters are ignored.
record_job_script - If set to true, this adds the contents of the script executed by a job to the log.
job_log_file_max_size - This specifies a soft limit (in kilobytes) for the job log's maximum size. The
file size is checked every five minutes and if the current day file size is greater than or equal to this
value, it is rolled from <filename> to <filename.1> and a new empty log is opened. If the current day
file size exceeds the maximum size a second time, the <filename.1> log file is rolled to <filename.2>,
the current log is rolled to <filename.1>, and a new empty log is opened. Each new log causes all
other logs to roll to an extension that is one greater than its current number. Any value less than 0 is
ignored by pbs_server (meaning the log will not be rolled).
job_log_file_roll_depth - This sets the maximum number of new log files that are kept in a day if
the job_log_file_max_size parameter is set. For example, if the roll depth is set to 3, no file can roll
higher than <filename.3>. If a file is already at the specified depth, such as <filename.3>, the file is
deleted so it can be replaced by the incoming file roll, <filename.2>.
job_log_keep_days - This maintains logs for the number of days designated. If set to 4, any log file
older than 4 days old is deleted.

11.1 Troubleshooting
There are a few general strategies that can be followed to determine the cause of unexpected behavior.
These are a few of the tools available to help determine where problems occur.

11.1.1 Host Resolution
11.1.2 Firewall Configuration
11.1.3 TORQUE Log File
11.1.4 Using tracejob to Locate Job Failures
11.1.5 Using GDB to Locate Failures
11.1.6 Other Diagnostic Options
11.1.7 Stuck Jobs
11.1.8 Frequently Asked Questions

11.1.1 Host Resolution

The TORQUE server host must be able to perform both forward and reverse name lookup on itself and on all
compute nodes. Likewise, each compute node must be able to perform forward and reverse name lookup on
itself, the TORQUE server host, and all other compute nodes. In many cases, name resolution is handled by
configuring the node's /etc/hosts file although DNS and NIS services may also be used. Commands such as
nslookup or dig can be used to verify proper host resolution.

Invalid host resolution may exhibit itself with compute nodes reporting as down within the output of
pbsnodes -a and with failure of the momctl -d 3 command.

11.1.2 Firewall Configuration

Be sure that, if you have firewalls running on the server or node machines, you allow connections on the
appropriate ports for each machine. TORQUE pbs_mom daemons use UDP ports 1023 and below if privileged
ports are configured (privileged ports is the default). The pbs_server and pbs_mom daemons use TCP and
UDP ports 15001-15004 by default.

Firewall based issues are often associated with server to MOM communication failures and messages such as
'premature end of message' in the log files.

Also, the tcpdump program can be used to verify the correct network packets are being sent.

11.1.3 TORQUE Log Files

The pbs_server keeps a daily log of all activity in the TORQUE_HOME/server_logs directory. The pbs_mom
also keeps a daily log of all activity in the TORQUE_HOME/mom_logs/ directory. These logs contain information
on communication between server and MOM as well as information on jobs as they enter the queue and as
they are dispatched, run, and terminated. These logs can be very helpful in determining general job failures.
For MOM logs, the verbosity of the logging can be adjusted by setting the loglevel parameter in the
mom_priv/config file. For server logs, the verbosity of the logging can be adjusted by setting the server
log_level attribute in qmgr.

For both pbs_mom and pbs_server daemons, the log verbosity level can also be adjusted by setting the
environment variable PBSLOGLEVEL to a value between 0 and 7. Further, to dynamically change the log
level of a running daemon, use the SIGUSR1 and SIGUSR2 signals to increase and decrease the active
loglevel by one. Signals are sent to a process using the kill command. For example, kill -USR1 `pgrep
pbs_mom` would raise the log level up by one. The current loglevel for pbs_mom can be displayed with
the command momctl -d3.

11.1.4 Using tracejob to Locate Job Failures

Overview

The tracejob utility extracts job status and job events from accounting records, MOM log files, server log

files, and scheduler log files. Using it can help identify where, how, a why a job failed. This tool takes a job id
as a parameter as well as arguments to specify which logs to search, how far into the past to search, and
other conditions.

Syntax

tracejob [-a|s|l|m|q|v|z] [-c count] [-w size] [-p path] [-n <DAYS>] [-f filter_type]
<JOBID>

 -p : path to PBS_SERVER_HOME
 -w : number of columns of your terminal
 -n : number of days in the past to look for job(s) [default 1]
 -f : filter out types of log entries, multiple -f's can be specified
 error, system, admin, job, job_usage, security, sched, debug,
 debug2, or absolute numeric hex equivalent
 -z : toggle filtering excessive messages
 -c : what message count is considered excessive
 -a : don't use accounting log files
 -s : don't use server log files
 -l : don't use scheduler log files
 -m : don't use MOM log files
 -q : quiet mode - hide all error messages
 -v : verbose mode - show more error messages

Example

The tracejob command operates by searching the pbs_server accounting records and the pbs_server,
mom, and scheduler logs. To function properly, it must be run on a node and as a user which can
access these files. By default, these files are all accessible by the user root and only available on the
cluster management node. In particular, the files required by tracejob are located in the following
directories:

TORQUE_HOME/server_priv/accounting
TORQUE_HOME/server_logs
TORQUE_HOME/mom_logs
TORQUE_HOME/sched_logs

> tracejob -n 10 1131

Job: 1131.icluster.org

03/02/2005 17:58:28 S enqueuing into batch, state 1 hop 1
03/02/2005 17:58:28 S Job Queued at request of dev@icluster.org,
owner =
 dev@icluster.org, job name = STDIN, queue =
batch
03/02/2005 17:58:28 A queue=batch
03/02/2005 17:58:41 S Job Run at request of dev@icluster.org
03/02/2005 17:58:41 M evaluating limits for job
03/02/2005 17:58:41 M phase 2 of job launch successfully
completed
03/02/2005 17:58:41 M saving task (TMomFinalizeJob3)
03/02/2005 17:58:41 M job successfully started
03/02/2005 17:58:41 M job 1131.koa.icluster.org reported
successful start on 1 node(s)
03/02/2005 17:58:41 A user=dev group=dev jobname=STDIN
queue=batch ctime=1109811508
 qtime=1109811508 etime=1109811508
start=1109811521
 exec_host=icluster.org/0
Resource_List.neednodes=1 Resource_List.nodect=1
 Resource_List.nodes=1
Resource_List.walltime=00:01:40
03/02/2005 18:02:11 M walltime 210 exceeded limit 100
03/02/2005 18:02:11 M kill_job
03/02/2005 18:02:11 M kill job found a task to kill

tracejob may only be used on systems where these files are made available. Non-root users may be able to
use this command if the permissions on these directories or files is changed appropriately.

11.1.5 Using GDB to Locate Failures

If either the pbs_mom or pbs_server fail unexpectedly (and the log files contain no information on the
failure) gdb can be used to determine whether or not the program is crashing. To start pbs_mom or
pbs_server under GDB export the environment variable PBSDEBUG=yes and start the program (i.e., gdb
pbs_mom and then issue the run subcommand at the gdb prompt). GDB may run for some time until a failure
occurs and at which point, a message will be printed to the screen and a gdb prompt again made available. If
this occurs, use the gdb where subcommand to determine the exact location in the code. The information
provided may be adequate to allow local diagnosis and correction. If not, this output may be sent to the
mailing list or to help for further assistance. (for more information on submitting bugs or requests for help
please see the Mailing List Instructions)

See the PBSCOREDUMP parameter for enabling creation of core files.

11.1.6 Other Diagnostic Options

When PBSDEBUG is set, some client commands will print additional diagnostic information.

To debug different kinds of problems, it can be useful to see where in the code time is being spent. This is
called profiling and there is a Linux utility gprof that will output a listing of routines and the amount of time
spent in these routines. This does require that the code be compiled with special options to instrument the
code and to produce a file, gmon.out, that will be written at the end of program execution.

The following listing shows how to build TORQUE with profiling enabled. Notice that the output file for
pbs_mom will end up in the mom_priv directory because its startup code changes the default directory to
this location.

Another way to see areas where a program is spending most of its time is with the valgrind program. The
advantage of using valgrind is that the programs do not have to be specially compiled.

11.1.7 Stuck Jobs

If a job gets stuck in TORQUE, try these suggestions to resolve the issue.

Use the qdel command to cancel the job.

Force the MOM to send an obituary of the job ID to the server.

You can try clearing the stale jobs by using the momctl command on the compute nodes where the

$ export PBSDEBUG=yes
$ cmd

./configure "CFLAGS=-pg -lgcov -fPIC"
make -j5
make install
pbs_mom
... do some stuff for a while ...
momctl -s
cd /var/spool/torque/mom_priv
gprof -b `which pbs_mom` gmon.out |less
#

valgrind --tool=callgrind pbs_mom

> qsig -s 0 <JOBID>

http://www.gnu.org/software/gdb/
mailto:help@supercluster.org
ttp://www.supercluster.org/mailman/listinfo/torqueusers

jobs are still listed.

Setting the qmgr server setting mom_job_sync to True might help prevent jobs from hanging.

To check and see if this is already set, use:

If the suggestions above cannot remove the stuck job, you can try qdel -p. However, since the -p
option purges all information generated by the job, this is not a recommended option unless the above
suggestions fail to remove the stuck job.

The last suggestion for removing stuck jobs from compute nodes is to restart the pbs_mom.

For additional troubleshooting, run a tracejob on one of the stuck jobs. You can then create an online support
ticket with the full server log for the time period displayed in the trace job.

11.1.8 Frequently Asked Questions (FAQ)

Cannot connect to server: error=15034
Manually deleting jobs
Which user must run TORQUE?
Scheduler cannot start jobs: rc=15003
PBS_Server: pbsd_init, Unable to read server database
qsub will not allow submission of jobs requesting many processors
qsub reports 'Bad UID for job execution'
Why does my job keep bouncing from running to queued?
How do I use PVM with TORQUE?
My build fails attempting to find the TCL library"
My job will not start, failing with the message 'cannot send job to mom, state=PRERUN'
I want to allow root to run jobs
How do I determine what version of Torque I am using?

Cannot connect to server: error=15034

This error occurs in TORQUE clients (or their APIs) because TORQUE cannot find the server_name file and/or
the PBS_DEFAULT environment variable is not set. The server_name file or PBS_DEFAULT variable indicate
the pbs_server's hostname that the client tools should communicate with. The server_name file is usually
located in TORQUE's local state directory. Make sure the file exists, has proper permissions, and that the
version of TORQUE you are running was built with the proper directory settings. Alternatively you can set the
PBS_DEFAULT environment variable. Restart TORQUE daemons if you make changes to these settings.

Deleting 'Stuck' Jobs

To manually delete a stale job which has no process, and for which the mother superior is still alive, sending
a sig 0 with qsig will often cause MOM to realize the job is stale and issue the proper JobObit notice. Failing
that, use momctl -c to forcefully cause MOM to purge the job. The following process should never be
necessary:

shut down the MOM on the mother superior node

> momctl -c 58925 -h compute-5-20

> qmgr -c "set server mom_job_sync = True"

> qmgr -c "p s"

> qdel -p <JOBID>

http://support.clusterresources.com/
http://support.clusterresources.com/

delete all files and directories related to the job from TORQUE_HOME/mom_priv/jobs
restart the MOM on the mother superior node.

If the mother superior MOM has been lost and cannot be recovered (i.e, hardware or disk failure), a job
running on that node can be purged from the output of qstat using the qdel -p command or can be removed
manually using the following steps:

To remove job X:

1. Shutdown pbs_server.

2. Remove job spool files.

3. Restart pbs_server.

Which user must run TORQUE?

TORQUE (pbs_server & pbs_mom) must be started by a user with root privileges.

Scheduler cannot run jobs - rc: 15003

For a scheduler, such as Moab or Maui, to control jobs with TORQUE, the scheduler needs to be run be a
user in the server operators / managers list (see qmgr (set server operators / managers)). The default for the
server operators / managers list is root@localhost. For TORQUE to be used in a grid setting with Silver, the
scheduler needs to be run as root.

PBS_Server: pbsd_init, Unable to read server database

If this message is displayed upon starting pbs_server it means that the local database cannot be read. This
can be for several reasons. The most likely is a version mismatch. Most versions of TORQUE can read each
others' databases. However, there are a few incompatibilities between OpenPBS and TORQUE. Because of
enhancements to TORQUE, it cannot read the job database of an OpenPBS server (job structure sizes have
been altered to increase functionality). Also, a compiled in 32 bit mode cannot read a database generated by
a 64 bit pbs_server and vice versa.

To reconstruct a database (excluding the job database), first print out the old data with this command:

> qterm

> rm TORQUE_HOME/server_priv/jobs/X.SC
TORQUE_HOME/server_priv/jobs/X.JB

> pbs_server

%> qmgr -c "p s"
#
Create queues and set their attributes.
#
#
Create and define queue batch
#
create queue batch
set queue batch queue_type = Execution
set queue batch acl_host_enable = False
set queue batch resources_max.nodect = 6
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00

http://www.adaptivecomputing.com/resources/docs/mwm
http://www.adaptivecomputing.com/resources/docs/maui

Copy this information somewhere. Restart pbs_server with the following command:

When it to prompts to overwrite the previous database enter 'y' then enter the data exported by the qmgr
command with a command similar to the following:

Restart pbs_server without the flags:

This will reinitialize the database to the current version. Note that reinitializing the server database will reset
the next jobid to 1.

qsub will not allow the submission of jobs requesting many processors

TORQUE's definition of a node is context sensitive and can appear inconsistent. The qsub '-l nodes=<X>'
expression can at times indicate a request for X processors and other time be interpreted as a request for X
nodes. While qsub allows multiple interpretations of the keyword nodes, aspects of the TORQUE server's
logic are not so flexible. Consequently, if a job is using '-l nodes' to specify processor count and the
requested number of processors exceeds the available number of physical nodes, the server daemon will
reject the job.

To get around this issue, the server can be told it has an inflated number of nodes using the
resources_available attribute. To take affect, this attribute should be set on both the server and the
associated queue as in the example below. See resources_available for more information.

The pbs_server daemon will need to be restarted before these changes will take affect.

qsub reports 'Bad UID for job execution'

set queue batch resources_available.nodect = 18
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server managers = griduser@oahu.icluster.org
set server managers += scott@*.icluster.org
set server managers += wightman@*.icluster.org
set server operators = griduser@oahu.icluster.org
set server operators += scott@*.icluster.org
set server operators += wightman@*.icluster.org
set server default_queue = batch
set server log_events = 511
set server mail from = adm

> pbs_server -t create

> cat data | qmgr

> qterm
> pbs_server

> qmgr
Qmgr: set server resources_available.nodect=2048
Qmgr: set queue batch resources_available.nodect=2048

[guest@login2]$ qsub test.job

Job submission hosts must be explicitly specified within TORQUE or enabled via RCmd security mechanisms in
order to be trusted. In the example above, the host 'login2' is not configured to be trusted. This process is
documented in Configuring Job Submission Hosts.

Why does my job keep bouncing from running to queued?

There are several reasons why a job will fail to start. Do you see any errors in the MOM logs? Be sure to
increase the loglevel on MOM if you don't see anything. Also be sure TORQUE is configured with --enable-
syslog and look in /var/log/messages (or wherever your syslog writes).

Also verify the following on all machines:

DNS resolution works correctly with matching forward and reverse
time is synchronized across the head and compute nodes
user accounts exist on all compute nodes
user home directories can be mounted on all compute nodes
prologue scripts (if specified) exit with 0

If using a scheduler such as Moab or Maui, use a scheduler tool such as checkjob to identify job start issues.

How do I use PVM with TORQUE?

Start the master pvmd on a compute node and then add the slaves
mpiexec can be used to launch slaves using rsh or ssh (use export PVM_RSH=/usr/bin/ssh to use ssh)

Access can be managed by rsh/ssh without passwords between the batch nodes, but denying it from
anywhere else, including the interactive nodes. This can be done with xinetd and sshd configuration
(root is allowed to ssh everywhere). This way, the pvm daemons can be started and killed from the
job script.

The problem is that this setup allows the users to bypass the batch system by writing a job script that uses
rsh/ssh to launch processes on the batch nodes. If there are relatively few users and they can more or less
be trusted, this setup can work.

My build fails attempting to use the TCL library

TORQUE builds can fail on TCL dependencies even if a version of TCL is available on the system. TCL is only
utilized to support the xpbsmon client. If your site does not use this tool (most sites do not use xpbsmon),
you can work around this failure by rerunning configure with the --disable-gui argument.

My job will not start, failing with the message 'cannot send job to mom, state=PRERUN'

If a node crashes or other major system failures occur, it is possible that a job may be stuck in a corrupt
state on a compute node. TORQUE 2.2.0 and higher automatically handle this when the mom_job_sync
parameter is set via qmgr (the default). For earlier versions of TORQUE, set this parameter and restart the
pbs_mom daemon.

This error can also occur if not enough free space is available on the partition that holds TORQUE.

qsub: Bad UID for job execution

http://www.adaptivecomputing.com/resources/docs/mwm
http://www.adaptivecomputing.com/resources/docs/maui
http://semper/docs/mwm/commands/checkjob.php

I want to submit and run jobs as root

While this can be a very bad idea from a security point of view, in some restricted environments this can be
quite useful and can be enabled by setting the acl_roots parameter via qmgr command as in the following
example:

How do I determine what version of Torque I am using?

There are times when you want to find out what version of Torque you are using. An easy way to do this is to
run the following command:

See Also

PBSCOREDUMP parameter

qmgr
> qmgr -c 's s acl_roots+=root@*'

qmgr
> qmgr -c "p s" | grep pbs_ver

11.2 Compute Node Health Check

11.2.1 Compute Node Health Check Overview

TORQUE provides the ability to perform health checks on each compute node. If these checks fail, a failure
message can be associated with the node and routed to the scheduler. Schedulers (such as Moab) can
forward this information to administrators by way of scheduler triggers, make it available through scheduler
diagnostic commands, and automatically mark the node down until the issue is resolved. (See the
RMMSGIGNORE parameter in Appendix F of the Moab Workload Manager Administrator's Guide for more
information.)

11.2.2 Configuring MOM's to Launch a Health Check

The health check feature is configured via the pbs_mom config file using the parameters described below:

Parameter Format Default Description

node_check_script <STRING> N/A (required) specifies the fully qualified pathname of the health
check script to run

node_check_interval <INTEGER> 1 (optional) specifies the number of MOM intervals between
health checks (by default, each MOM interval is 45 seconds
long - this is controlled via the
DEFAULT_SERVER_STAT_UPDATES #define located in
TORQUE_HOME/src/resmom/mom_main.c). The integer may be
followed by a list of event names (currently supported are
jobstart and jobend. See the pbs_mom command page for
more information).

11.2.3 Creating the Health Check Script

The health check script is executed directly by the pbs_mom daemon under the root user id. It must be
accessible from the compute node and may be a script or compile executable program. It may make any
needed system calls and execute any combination of system utilities but should not execute resource
manager client commands. Also, as of TORQUE 1.0.1, the pbs_mom daemon blocks until the health check is
completed and does not possess a built-in timeout. Consequently, it is advisable to keep the launch script
execution time short and verify that the script will not block even under failure conditions.

If the script detects a failure, it should return the keyword 'ERROR' to stdout followed by an error message.
When a failure is detected, the ERROR keyword should be printed to stdout before any other data. The
message (up to 1024 characters) immediately following the ERROR keyword must all be contained on the
same line. The message is assigned to the node attribute 'message' of the associated node.

11.2.4 Adjusting Node State Based on the Health Check Output

If the health check reports an error, the node attribute 'message' is set to the error string returned. Cluster
schedulers can be configured to adjust a given node's state based on this information. For example, by
default, Moab sets a node's state to down if a node error message is detected and restores the state as soon
as the failure disappears.

11.2.5 Example Health Check Script

As mentioned, the health check can be a shell script, PERL, Python, C-executable, or anything which can be
executed from the command line capable of setting STDOUT. The example below demonstrates a very simple
health check:

#!/bin/sh

http://www.adaptivecomputing.com/resources/docs/mwm
http://semper/resources/docs/mwm/

/bin/mount | grep global

if [$? != "0"]
 then
 echo "ERROR cannot locate filesystem global"
 fi

11.3 Debugging

11.3.1 Debugging Facilities

TORQUE supports a number of diagnostic and debug options including the following:

PBSDEBUG environment variable - If set to 'yes', this variable will prevent pbs_server, pbs_mom,
and/or pbs_sched from backgrounding themselves allowing direct launch under a debugger. Also,
some client commands will provide additional diagnostic information when this value is set.
PBSLOGLEVEL environment variable - Can be set to any value between 0 and 7 and specifies the
logging verbosity level (default = 0)
PBSCOREDUMP environment variable - If set, it will cause the offending resource manager daemon to
create a core file if a SIGSEGV, SIGILL, SIGFPE, SIGSYS, or SIGTRAP signal is received. The core
dump will be placed in the daemon's home directory ($PBSHOME/mom_priv for pbs_mom).
NDEBUG #define - if set at build time, will cause additional low-level logging information to be output
to stdout for pbs_server and pbs_mom daemons.
tracejob reporting tool - can be used to collect and report logging and accounting information for
specific jobs

11.3.2 TORQUE Error Codes

Error Code Name Number Description

PBSE_NONE 15000 No error

PBSE_UNKJOBID 15001 Unknown job identifier

PBSE_NOATTR 15002 Undefined attribute

PBSE_ATTRRO 15003 Attempt to set READ ONLY attribute

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown batch request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 No permission

PBSE_BADHOST 15008 Access from host not allowed

PBSE_JOBEXIST 15009 Job already exists

PBSE_SYSTEM 15010 System error occurred

PBSE_INTERNAL 15011 Internal server error occurred

PBSE_REGROUTE 15012 Parent job of dependent in rte queue

PBSE_UNKSIG 15013 Unknown signal name

PBSE_BADATVAL 15014 Bad attribute value

PBSE_MODATRRUN 15015 Cannot modify attribute in run state

PBSE_BADSTATE 15016 Request invalid for job state

PBSE_UNKQUE 15018 Unknown queue name

PBSE_BADCRED 15019 Invalid credential in request

PBSE_EXPIRED 15020 Expired credential in request

PBSE_QUNOENB 15021 Queue not enabled

PBSE_QACESS 15022 No access permission for queue

PBSE_BADUSER 15023 Bad user - no password entry

PBSE_HOPCOUNT 15024 Max hop count exceeded

PBSE_QUEEXIST 15025 Queue already exists

PBSE_ATTRTYPE 15026 Incompatible queue attribute type

PBSE_QUEBUSY 15027 Queue busy (not empty)

PBSE_QUENBIG 15028 Queue name too long

PBSE_NOSUP 15029 Feature/function not supported

PBSE_QUENOEN 15030 Cannot enable queue,needs add def

PBSE_PROTOCOL 15031 Protocol (ASN.1) error

PBSE_BADATLST 15032 Bad attribute list structure

PBSE_NOCONNECTS 15033 No free connections

PBSE_NOSERVER 15034 No server to connect to

PBSE_UNKRESC 15035 Unknown resource

PBSE_QUENODFLT 15036 No default queue defined

PBSE_EXCQRESC 15037 Job exceeds queue resource limits

PBSE_NORERUN 15038 Job not rerunnable

PBSE_ROUTEREJ 15039 Route rejected by all destinations

PBSE_ROUTEEXPD 15040 Time in route queue expired

PBSE_MOMREJECT 15041 Request to MOM failed

PBSE_BADSCRIPT 15042 (qsub) Cannot access script file

PBSE_STAGEIN 15043 Stage-In of files failed

PBSE_RESCUNAV 15044 Resources temporarily unavailable

PBSE_BADGRP 15045 Bad group specified

PBSE_MAXQUED 15046 Max number of jobs in queue

PBSE_CKPBSY 15047 Checkpoint busy, may be retries

PBSE_EXLIMIT 15048 Limit exceeds allowable

PBSE_BADACCT 15049 Bad account attribute value

PBSE_ALRDYEXIT 15050 Job already in exit state

PBSE_NOCOPYFILE 15051 Job files not copied

PBSE_CLEANEDOUT 15052 Unknown job id after clean init

PBSE_NOSYNCMSTR 15053 No master in sync set

PBSE_BADDEPEND 15054 Invalid dependency

PBSE_DUPLIST 15055 Duplicate entry in list

PBSE_DISPROTO 15056 Bad DIS based request protocol

PBSE_EXECTHERE 15057 Cannot execute there

PBSE_SISREJECT 15058 Sister rejected

PBSE_SISCOMM 15059 Sister could not communicate

PBSE_SVRDOWN 15060 Requirement rejected -server shutting down

PBSE_CKPSHORT 15061 Not all tasks could checkpoint

PBSE_UNKNODE 15062 Named node is not in the list

PBSE_UNKNODEATR 15063 Node-attribute not recognized

PBSE_NONODES 15064 Server has no node list

PBSE_NODENBIG 15065 Node name is too big

PBSE_NODEEXIST 15066 Node name already exists

PBSE_BADNDATVAL 15067 Bad node-attribute value

PBSE_MUTUALEX 15068 State values are mutually exclusive

PBSE_GMODERR 15069 Error(s) during global modification of nodes

PBSE_NORELYMOM 15070 Could not contact Mom

PBSE_NOTSNODE 15071 No time-shared nodes

See Also

Troubleshooting Guide

Appendix A: Commands Overview

A.1 Client Commands

Command Description

momctl manage/diagnose MOM (node execution) daemon

pbsdsh launch tasks within a parallel job

pbsnodes view/modify batch status of compute nodes

qalter modify queued batch jobs

qchkpt checkpoint batch jobs

qdel delete/cancel batch jobs

qgpumode specifies new mode for GPU

qgpureset reset the GPU

qhold hold batch jobs

qmgr manage policies and other batch configuration

qrerun rerun a batch job

qrls release batch job holds

qrun start a batch job

qsig send a signal to a batch job

qstat view queues and jobs

qsub submit jobs

qterm shutdown pbs server daemon

tracejob trace job actions and states recorded in TORQUE logs

A.2 Binary Executables

Command Description

pbs_iff interprocess authentication service

pbs_mom start MOM (node execution) daemon

pbs_server start server daemon

pbs_track tell pbs_mom to track a new process

See Also

MOM Configuration
Server Parameters

http://semper/blanks/torque/commands/qgpumode.php
http://semper/blanks/torque/commands/qgpureset.php

momctl
(PBS Mom Control)

Synopsis
momctl -c { <JOBID> | all }
momctl -C
momctl -d { <INTEGER> | <JOBID> }
momctl -f <FILE>
momctl -h <HOST>[,<HOST>]...
momctl -p <PORT_NUMBER>
momctl -q <ATTRIBUTE>
momctl -r { <FILE> | LOCAL:<FILE> }
momctl -s

Overview

The momctl command allows remote shutdown, reconfiguration, diagnostics, and querying of the pbs_mom
daemon.

Format

-c — Clear

Format: { <JOBID> | all }

Default: ---

Description: Clear stale job information

Example:

-C — Cycle

Format: ---

Default: ---

Description: Cycle pbs_mom(s)

Example:

Cycle pbs_mom on node1

-d — Diagnose

Format: { <INTEGER> | <JOBID> }

Default: 0

Description: Diagnose mom(s)

See the Diagnose Detail table below for more information.

Example:

Print level 2 and lower diagnose information for the MOM on node1

-f — Host File

momctl -h node1 -c 15406

momctl -h node1 -C

momctl -h node1 -d 2

Format: <FILE>

Default: ---

Description: A file contain only comma or whitespace (space, tab, or new line) delimited hostnames

Example:

Print diagnose information for the moms running on the hosts specified in hosts.txt

-h — Host List

Format: <HOST>[,<HOST>]...

Default: localhost

Description: A comma separated list of hosts

Example:

Print diagnose information for the moms running on node1, node2 and node3

-p — Port

Format: <PORT_NUMBER>

Default: TORQUE's default port number

Description: The port number for the specified mom(s)

Example:

Request diagnose information over port 5455 on node1

-q — Query

Format: <ATTRIBUTE>

Default: ---

Description: Query <ATTRIBUTE> on specified MOM (where <ATTRIBUTE> is a property listed by pbsnodes
-a)

Example:

Print the amount of physmem on localhost

-r — Reconfigure

Format: { <FILE> | LOCAL:<FILE> }

Default: ---

Description: Reconfigure mom(s) with remote or local config file, <FILE>. This does not work if
$remote_reconfig is not set to true when the MOM is started.

Example:

Reconfigure MOM on node1 with /home/user1/new.config on node1

-s — Shutdown

momctl -f hosts.txt -d

momctl -h node1,node2,node3 -d

momctl -p 5455 -h node1 -d

momctl -q physmem

momctl -r /home/user1/new.config -h node1

Format:

Default: ---

Description: Shutdown pbs_mom

Example:

Terminates pbs_mom process on localhost

Query Attributes

arch — node hardware architecture
availmem — available RAM
loadave — 1 minute load average
ncpus — number of CPUs available on the system
netload — total number of bytes transferred over all network interfaces
nsessions — number of sessions active
nusers — number of users active
physmem — configured RAM
sessions — list of active sessions
totmem — configured RAM plus configured swap

Diagnose Detail

Level Description

0

Display the following information:

Local hostname
Expected server hostname
Execution version
MOM home directory
MOM config file version (if specified)
Duration MOM has been executing
Duration since last request from pbs_server daemon
Duration since last request to pbs_server daemon
RM failure messages (if any)
Log verbosity level
Local job list

1

All information for level 0 plus the following:

Interval between updates sent to server
Number of initialization messages sent to pbs_server daemon
Number of initialization messages received from pbs_server daemon
Prolog/epilog alarm time
List of trusted clients

2

All information from level 1 plus the following:

PID
Event alarm status

momctl -s

Example 1: MOM Diagnostics

Example 2: System Shutdown

> momctl -d 1

Host: nsrc/nsrc.fllcl.com Server: 10.10.10.113 Version:
torque_1.1.0p4
HomeDirectory: /usr/spool/PBS/mom_priv
ConfigVersion: 147
MOM active: 7390 seconds
Last Msg From Server: 7389 seconds (CLUSTER_ADDRS)
Server Update Interval: 20 seconds
Server Update Interval: 20 seconds
Init Msgs Received: 0 hellos/1 cluster-addrs
Init Msgs Sent: 1 hellos
LOGLEVEL: 0 (use SIGUSR1/SIGUSR2 to adjust)
Prolog Alarm Time: 300 seconds
Trusted Client List: 12.14.213.113,127.0.0.1
JobList: NONE

diagnostics complete

> momctl -s -f /opt/clusterhostfile

shutdown request successful on node001
shutdown request successful on node002
shutdown request successful on node003
shutdown request successful on node004
shutdown request successful on node005
shutdown request successful on node006

pbsdsh
distribute tasks to nodes under pbs

Synopsis
pbsdsh [-c copies] [-o] [-s] [-u] [-v] program [args]
pbsdsh [-n node] [-o] [-s] [-u] [-v] program [args]
pbsdsh [-h nodename] [-o] [-v] program [args]

Description

Executes (spawns) a normal Unix program on one or more nodes under control of the Portable Batch System,
PBS. Pbsdsh uses the Task Manager API (see tm_spawn(3)) to distribute the program on the allocated nodes.

When run without the -c or the -n option, pbsdsh will spawn the program on all nodes allocated to the PBS
job. The spawns take place concurrently - all execute at (about) the same time.

Users will find the PBS_TASKNUM, PBS_NODENUM, and the PBS_VNODENUM environmental variables useful.
They contain the TM task id, the node identifier, and the cpu (virtual node) identifier.

Options

-c copies
The program is spawned on the first Copies nodes allocated. This option is mutual exclusive with -n.

-h hostname
The program is spawned on the node specified.

-n node
The program is spawned on one node which is the n-th node allocated. This option is mutual exclusive
with -c.

-o
Capture stdout of the spawned program. Normally stdout goes to the job’s output.

-s
If this option is given, the program is run in turn on each node, one after the other.

-u
The program is run once on each node (unique). This ignores the number of allocated processors on a
given node.

-v
Verbose output about error conditions and task exit status is produced.

Operands

The first operand, program, is the program to execute.

Additional operands are passed as arguments to the program.

Standard Error

The pbsdsh command will write a diagnostic message to standard error for each error occurrence.

Exit Status

Upon successful processing of all the operands presented to the command, the exit status will be a value of
zero.

If the pbsdsh command fails to process any operand, or fails to contact the MOM daemon on the localhost
the command exits with a value greater than zero.

See Also

qsub(1B), tm_spawn(3B)

pbsnodes
pbs node manipulation

Synopsis
pbsnodes [-{a|x}] [-q] [-s server] [node|:property]
pbsnodes -l [-q] [-s server] [state] [nodename|:property ...]
pbsnodes [-{c|d|o|r}] [-q] [-s server] [-n -l] [-N "note"] [node|:property]

Description

The pbsnodes command is used to mark nodes down, free or offline. It can also be used to list nodes and
their state. Node information is obtained by sending a request to the PBS job server. Sets of nodes can be
operated on at once by specifying a node property prefixed by a colon. See Node States for more information
on node states.

Nodes do not exist in a single state, but actually have a set of states. For example, a node can be
simultaneously "busy" and "offline". The "free" state is the absense of all other states and so is never
combined with other states.

In order to execute pbsnodes with other than the -a or -l options, the user must have PBS Manager or
Operator privilege.

Options

-a
All attributes of a node or all nodes are listed. This is the default if no flag is given.

-x
Same as -a, but the output has an XML-like format.

-c
Clear OFFLINE from listed nodes.

-d
Print MOM diagnosis on the listed nodes. Not yet implemented. Use momctl instead.

-o
Add the OFFLINE state. This is different from being marked DOWN. OFFLINE prevents new jobs from
running on the specified nodes. This gives the administrator a tool to hold a node out of service
without changing anything else. The OFFLINE state will never be set or cleared automatically by
pbs_server; it is purely for the manager or operator.

-p
Purge the node record from pbs_server. Not yet implemented.

-r
Reset the listed nodes by clearing OFFLINE and adding DOWN state. pbs_server will ping the node and,
if they communicate correctly, free the node.

-l
List node names and their state. If no state is specified, only nodes in the DOWN, OFFLINE, or
UNKNOWN states are listed. Specifying a state string acts as an output filter. Valid state strings are
"active", "all", "busy", "down", "free", "offline", "unknown", and "up".

Using all displays all nodes and their attributes.

Using active displays all nodes which are job-exclusive, job-sharing, or busy.

Using up displays all nodes in an "up state". Up states include job-execlusive, job-sharing, reserve,
free, busy and time-shared.

All other strings display the nodes which are currently in the state indicated by the string.

-N
Specify a "note" attribute. This allows an administrator to add an arbitrary annotation to the listed
nodes. To clear a note, use -N "" or -N n.

-n

Show the "note" attribute for nodes that are DOWN, OFFLINE, or UNKNOWN. This option requires -l.
-q

Supress all error messages.
-s

Specify the PBS server's hostname or IP address.

See Also

pbs_server(8B) and the PBS External Reference Specification

qalter
alter batch job

Synopsis
qalter [-a date_time][-A account_string][-c interval][-e path_name]
 [-h hold_list][-j join_list][-k keep_list][-l resource_list]
 [-m mail_options][-M mail_list][-n][-N name][-o path_name]
 [-p priority][-q][-r y|n][-S path_name_list][-u user_list]
 [-v variable_list][-W additional_attributes]
 [-t array_range]
 job_identifier ...

Description

The qalter command modifies the attributes of the job or jobs specified by job_identifier on the command
line. Only those attributes listed as options on the command will be modified. If any of the specified
attributes cannot be modified for a job for any reason, none of that job's attributes will be modified.

The qalter command accomplishes the modifications by sending a Modify Job batch request to the batch
server which owns each job.

Options

-a date_time
Replaces the time at which the job becomes eligible for execution. The date_time argument syntax is:

[[[[CC]YY]MM]DD]hhmm[.SS].

If the month, MM, is not specified, it will default to the current month if the specified day DD, is in the
future. Otherwise, the month will be set to next month. Likewise, if the day, DD, is not specified, it will
default to today if the time hhmm is in the future. Otherwise, the day will be set to tomorrow.

This attribute can be altered once the job has begun execution, but it will not take effect unless the
job is rerun.

-A account_string
Replaces the the account string associated with the job. This attribute cannot be altered once the job
has begun execution.

-c checkpoint_interval
Replaces the the interval at which the job will be checkpointed. If the job executes upon a host which
does not support checkpointing, this option will be ignored.

The interval argument is specified as:

n
No checkpointing is to be performed

s
Checkpointing is to be performed only when the server executing the job is shutdown.

c
Checkpointing is to be performed at the default minimum cpu time for the queue from which the
job is executing.

c=minutes
Checkpointing is performed at intervals of the specified amount of time in minutes. Minutes are
the number of minutes of CPU time used, not necessarily clock time. This value must be greater
than zero. If the number is less than the default checkpoint time, the default time will be used.

This attribute can be altered once the job has begun execution, but the new value does not take effect
unless the job is rerun.

-e path_name
Replaces the path to be used for the standard error stream of the batch job. The path argument is of
the form:

[hostname:]path_name

where hostname is the name of a host to which the file will be returned and path_name is the path
name on that host in the syntax recognized by POSIX 1003.1. The argument will be interpreted as
follows:

path_name
Where path_name is not an absolute path name, then the qalter command will expand the path
name relative to the current working directory of the command. The command will supply the
name of the host upon which it is executing for the hostname component.

hostname:path_name
Where path_name is not an absolute path name, then the qalter command will not expand the
path name. The execution server will expand it relative to the home directory of the user on the
system specified by hostname.

This attribute can be altered once the job has begun execution, but it will not take effect unless the
job is rerun.

-h hold_list
Updates the the types of holds on the job. The hold_list argument is a string of one or more of the
following characters:

u
Add the USER type hold.

s
Add the SYSTEM type hold if the user has the appropriate level of privilege. (Typically reserved
to the batch administrator.)

o
Add the OTHER (or OPERATOR) type hold if the user has the appropriate level of privilege.
(Typically reserved to the batch administrator and batch operator.)

n
Set to none and clear the hold types which could be applied with the users level of privilege.

Repetition of characters is permitted, but "n" may not appear in the same option argument with the
other three characters. This attribute can be altered once the job has begun execution, but the hold
will not take effect unless the job is rerun.

-j join
Declares which standard streams of the job will be merged together. The join argument value may be
the characters "oe" and "eo", or the single character "n".

A argument value of oe directs that the standard output and standard error streams of the job will be
merged, intermixed, and returned as the standard output. A argument value of eo directs that the
standard output and standard error streams of the job will be merged, intermixed, and returned as the
standard error.

A value of n directs that the two streams will be two separate files. This attribute can be altered once
the job has begun execution, but it will not take effect unless the job is rerun.

-k keep
Defines which if either of standard output or standard error of the job will be retained on the execution
host. If set for a stream, this option overrides the path name for that stream.

The argument is either the single letter "e", "o", or "n", or one or more of the letters "e" and "o"
combined in either order.

n
No streams are to be retained.

e
The standard error stream is to retained on the execution host. The stream will be placed in the
home directory of the user under whose user id the job executed. The file name will be the
default file name given by:

job_name.esequence
where job_name is the name specified for the job, and sequence is the sequence number
component of the job identifier.

o
The standard output stream is to be retained on the execution host. The stream will be placed in
the home directory of the user under whose user id the job executed. The file name will be the
default file name given by:

job_name.osequence
where job_name is the name specified for the job, and sequence is the sequence number
component of the job identifier.

eo
Both the standard output and standard error streams will be retained.

oe
Both the standard output and standard error streams will be retained.

This attribute cannot be altered once the job has begun execution.

-l resource_list
Modifies the list of resources that are required by the job. The Resource_List argument is in the
following syntax:

resource_name[=[value]][,resource_name[=[value]],...]

If a requested modification to a resource would exceed the resource limits for jobs in the current
queue, the server will reject the request.

If the job is running, only certain resources can be altered. Which resources can be altered in the run
state is system dependent. A user may only lower the limit for those resources.

-m mail_options
Replaces the set of conditions under which the execution server will send a mail message about the
job. The mail_options argument is a string which consists of the single character "n", or one or more
of the characters "a", "b", and "e".

If the character "n" is specified, no mail will be sent.

For the letters "a", "b", and "e":

a
mail is sent when the job is aborted by the batch system.

b
mail is sent when the job begins execution.

e
mail is sent when the job ends.

-M user_list
Replaces the list of users to whom mail is sent by the execution server when it sends mail about the
job.

The user_list argument is of the form:

user[@host][,user[@host],...]

-n node-exclusive
Sets or unsets exlusive node allocation on a job. Use the y and n options to enable or disable the
feature. This affects only cpusets and compatible schedulers.

-N name
Renames the job. The name specified may be up to and including 15 characters in length. It must
consist of printable, non white space characters with the first character alphabetic.

-o path
Replaces the path to be used for the standard output stream of the batch job. The path argument is of
the form:

[hostname:]path_name

where hostname is the name of a host to which the file will be returned and path_name is the path
name on that host in the syntax recognized by POSIX. The argument will be interpreted as follows:

path_name
Where path_name is not an absolute path name, then the qalter command will expand
the path name relative to the current working directory of the command. The command
will supply the name of the host upon which it is executing for the hostname component.

hostname:path_name
Where path_name is not an absolute path name, then the qalter command will not
expand the path name. The execution server will expand it relative to the home directory
of the user on the system specified by hostname.

This attribute can be altered once the job has begun execution, but it will not take effect unless the
job is rerun.

-p priority
Replaces the priority of the job. The priority argument must be a integer between -1024 and +1023
inclusive.

This attribute can be altered once the job has begun execution, but it will not take effect unless the
job is rerun.

-r [y|n]
Declares whether the job is rerunable. See the qrerun command. The option argument c is a single
character. PBS recognizes the following characters: y and n.

If the argument is "y", the job is marked rerunable. If the argument is "n", the job is marked as not
rerunable.

-S path
Declares the shell that interprets the job script.

The option argument path_list is in the form:

path[@host][,path[@host],...]

Only one path may be specified for any host named. Only one path may be specified without the
corresponding host name. The path selected will be the one with the host name that matched the
name of the execution host. If no matching host is found, then the path specified (without a host) will
be selected.

If the -S option is not specified, the option argument is the null string, or no entry from the path_list is
selected, the execution will use the login shell of the user on the execution host.

This attribute can be altered once the job has begun execution, but it will not take effect unless the
job is rerun.

> qalter ... -n y #enables exclusive node allocation on a job
> qalter ... -n n #disables exclusive node allocation on a job

-t array_range
The array_range argument is an integer id or a range of integers. Multiple ids or id ranges can be
combined in a comma delimted list. Examples: -t 1-100 or -t 1,10,50-100

If an array range isn't specified, the command tries to operate on the entire array. The command acts
on the array (or specified range of the array) just as it would on an individual job.

An optional slot limit can be specified to limit the amount of jobs that can run concurrently in the job
array. The default value is unlimited. The slot limit must be the last thing specified in the
array_request and is delimited from the array by a percent sign (%).

Here, the array weatherSimulationArray[] is configured to allow a maximum of 20 concurrently
running jobs.

Slot limits can be applied at job submit time with qsub, or can be set in a global server parameter
policy with max_slot_limit

-u user_list
Replaces the user name under which the job is to run on the execution system.

The user_list argument is of the form:

user[@host][,user[@host],...]

Only one user name may be given for per specified host. Only one of the user specifications may be
supplied without the corresponding host specification. That user name will be used for execution on
any host not named in the argument list.

This attribute cannot be altered once the job has begun execution.

-W additional_attributes
The -W option allows for the modification of additional job attributes.

Note if white space occurs anywhere within the option argument string or the equal sign, "=", occurs
within an attribute_value string, then the string must be enclosed with either single or double quote
marks.

PBS currently supports the following attributes within the -W option.

depend=dependency_list
Redefines the dependencies between this and other jobs. The dependency_list is in the form:

type[:argument[:argument...][,type:argument...]

The argument is either a numeric count or a PBS job id accord ing to type. If argument is a
count, it must be greater than 0. If it is a job id and is not fully specified in the form:
seq_number.server.name, it will be expanded according to the default server rules. If argument
is null (the preceding colon need not be specified), the dependency of the corresponding type is
cleared (unset).

synccount:count
This job is the first in a set of jobs to be executed at the same time. Count is the number
of additional jobs in the set.

syncwith:jobid
This job is an additional member of a set of jobs to be executed at the same time. In the
above and following dependency types, jobid is the job identifier of the first job in the set.

after:jobid [:jobid...]
This job may be scheduled for execution at any point after jobs jobid have started
execution.

afterok:jobid [:jobid...]
This job may be scheduled for execution only after jobs jobid have terminated with no
errors. See the csh warning under "Extended Description".

qalter weatherSimulationArray[] -t %20

afternotok:jobid [:jobid...]
This job may be scheduled for execution only after jobs jobid have terminated with
errors. See the csh warning under "Extended Description".

afterany:jobid [:jobid...]
This job may be scheduled for execution after jobs jobid have terminated, with or without
errors.

on:count
This job may be scheduled for execution after count dependencies on other jobs have
been satisfied. This dependency is used in conjunction with any of the 'before'
dependencies shown below. If job A has on:2, it will wait for two jobs with 'before'
dependencies on job A to be fulfilled before running.

before:jobid [:jobid...]
When this job has begun execution, then jobs jobid... may begin.

beforeok:jobid [:jobid...]
If this job terminates execution without errors, then jobs jobid... may begin. See the csh
warning under "Extended Description".

beforenotok:jobid [:jobid...]
If this job terminates execution with errors, then jobs jobid... may begin. See the csh
warning under "Extended Description".

beforeany:jobid [:jobid...]
When this job terminates execution, jobs jobid... may begin.

If any of the before forms are used, the job referenced by jobid must have been
submitted with a dependency type of on.

If any of the before forms are used, the jobs referenced by jobid must have the same
owner as the job being altered. Otherwise, the dependency will not take effect.

Error processing of the existence, state, or condition of the job specified to qalter is a deferred
service, i.e. the check is performed after the job is queued. If an error is detected, the job will
be deleted by the server. Mail will be sent to the job submitter stating the error.

group_list=g_list
Alters the group name under which the job is to run on the execution system.

The g_list argument is of the form:

group[@host][,group[@host],...]

Only one group name may be given per specified host. Only one of the group specifications may
be supplied without the corresponding host specification. That group name will used for
execution on any host not named in the argument list.

stagein=file_list
stageout=file_list

Alters which files are staged (copied) in before job start or staged out after the job completes
execution. The file_list is in the form:

local_file@hostname:remote_file[,...]

The name local_file is the name on the system where the job executes. It may be an absolute
path or a path relative to the home directory of the user. The name remote_file is the
destination name on the host specified by hostname. The name may be absolute or relative to
the users home directory on the destination host.

Operands

The qalter command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Standard Error

Any error condition, either in processing the options or the operands, or any error received in reply to the
batch requests will result in an error message being written to standard error.

Exit Status

Upon successful processing of all the operands presented to the qalter command, the exit status will be a
value of zero.

If the qalter command fails to process any operand, the command exits with a value greater than zero.

See Also

Batch Environment Services , qdel , qhold , qmove , qrls , qsub , touch

Copyright

Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base
Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engineers, Inc
and The Open Group. In the event of any discrepancy between this version and the original IEEE and The
Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The original
Standard can be obtained online at http://www.opengroup.org/unix/online.html.

http://www.opengroup.org/unix/online.html

qchkpt
checkpoint pbs batch jobs

Synopsis
qchkpt <JOBID>[<JOBID>] ...

Description

The qchkpt command requests that the PBS Mom generate a checkpoint file for a running job.

This is an extension to POSIX.2d.

The qchkpt command sends a Chkpt Job batch request to the server as described in the general section.

Options

None

Operands

The qchkpt command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Examples

Standard Error

The qchkpt command will write a diagnostic message to standard error for each error occurrence.

Exit Status

Upon successful processing of all the operands presented to the qchkpt command, the exit status will be a
value of zero.

If the qchkpt command fails to process any operand, the command exits with a value greater than zero.

See Also
qhold(1B), qrls(1B), qalter(1B), qsub(1B), pbs_alterjob(3B), pbs_holdjob(3B),
 pbs_rlsjob(3B), pbs_job_attributes(7B), pbs_resources_unicos8(7B)

> qchkpt 3233 request a checkpoint for job 3233

qdel
(delete job)

Synopsis
qdel [{-a <asynchronous delete>|-m <message>|-p|-W <delay>|-t <array_range>}]
<JOBID>[<JOBID>]... | 'all' | 'ALL'

Description

The qdel command deletes jobs in the order in which their job identifiers are presented to the command. A
job is deleted by sending a Delete Job batch request to the batch server that owns the job. A job that has
been deleted is no longer subject to management by batch services.

A batch job may be deleted by its owner, the batch operator, or the batch administrator.

A batch job being deleted by a server will be sent a SIGTERM signal following by a SIGKILL signal. The time
delay between the two signals is an attribute of the execution queue from which the job was run (set table by
the administrator). This delay may be overridden by the -W option.

See the PBS ERS section 3.1.3.3, "Delete Job Request", for more information.

Options

-a asynchronous delete
Performs an asynchronous delete. The server responds to the user before contacting the MOM. The
option qdel -a all performs qdel all due to restrictions from being single-threaded.

-w delay
Specifies the wait delay between the sending of the SIGTERM and SIGKILL signals. The argument is
the length of time in seconds of the delay.

-p purge
Forcibly purges the job from the server. This should only be used if a running job will not exit because
its allocated nodes are unreachable. The admin should make every attempt at resolving the problem on
the nodes. If a job's mother superior recovers after purging the job, any epilogue scripts may still run.
This option is only available to a batch operator or the batch administrator.

-m message
Specify a comment to be included in the email. The argument message specifies the comment to send.
This option is only available to a batch operator or the batch administrator.

-t array_range
The array_range argument is an integer id or a range of integers. Multiple ids or id ranges can be
combined in a comma delimted list. Examples: -t 1-100 or -t 1,10,50-100

If an array range isn't specified, the command tries to operate on the entire array. The command acts
on the array (or specified range of the array) just as it would on an individual job.

Operands

The qdel command accepts one or more job_identifier operands of the form:
 sequence_number[.server_name][@server]
or
 all

Examples

> qdel 1324
> qdel 1324-3 To delete one job of a job array

http://semper/blanks/torque/commands/all
http://semper/blanks/torque/commands/all

Standard Error

The qdel command will write a diagnostic messages to standard error for each error occurrence.

Exit Status

Upon successful processing of all the operands presented to the qdel command, the exit status will be a
value of zero.

If the qdel command fails to process any operand, the command exits with a value greater than zero.

See Also

qsub(1B), qsig(1B), and pbs_deljob(3B)

> qdel all To delete all jobs (Version 2.3.0 and later)

qhold
(hold job)

Synopsis
qhold [{-h <HOLD LIST>|-t <array_range>}] <JOBID>[<JOBID>] ...

Description

The qhold command requests that the server place one or more holds on a job. A job that has a hold is not
eligible for execution. There are three supported holds: USER, OTHER (also known as operator), and SYSTEM.

A user may place a USER hold upon any job the user owns. An "operator", who is a user with "operator
privilege," may place ether an USER or an OTHER hold on any job. The batch administrator may place any
hold on any job.

If no -h option is given, the USER hold will be applied to the jobs described by the job_identifier operand list.

If the job identified by job_identifier is in the queued, held, or waiting states, then the hold type is added to
the job. The job is then placed into held state if it resides in an execution queue.

If the job is in running state, then the following additional action is taken to interrupt the execution of the
job. If checkpoint / restart is supported by the host system, requesting a hold on a running job will (1) cause
the job to be checkpointed, (2) the resources assigned to the job will be released, and (3) the job is placed in
the held state in the execution queue.

If checkpoint / restart is not supported, qhold will only set the the requested hold attribute. This will have no
effect unless the job is rerun with the qrerun command.

Options

-h hold_list
The hold_list argument is a string consisting of one or more of the letters "u", "o", or "s" in any
combination. The hold type associated with each letter is:

u - USER
o - OTHER
s - SYSTEM

-t array_range
The array_range argument is an integer id or a range of integers. Multiple ids or id ranges can be
combined in a comma delimted list. Examples: -t 1-100 or -t 1,10,50-100

If an array range isn't specified, the command tries to operate on the entire array. The command acts
on the array (or specified range of the array) just as it would on an individual job.

Operands

The qhold command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Examples

Standard Error

> qhold -h u 3233 place user hold on job 3233

The qhold command will write a diagnostic message to standard error for each error occurrence.

Exit Status

Upon successful processing of all the operands presented to the qhold command, the exit status will be a
value of zero.

If the qhold command fails to process any operand, the command exits with a value greater than zero.

See Also
 qrls(1B), qalter(1B), qsub(1B), pbs_alterjob(3B), pbs_holdjob(3B),
 pbs_rlsjob(3B), pbs_job_attributes(7B), pbs_resources_unicos8(7B)

qmgr
(PBS Queue Manager)

pbs batch system manager

Synopsis

qmgr [-a] [-c command] [-e] [-n] [-z] [server...]

Description

The qmgr command provides an administrator interface to query and configure batch system parameters.

The command reads directives from standard input. The syntax of each directive is checked and the
appropriate request is sent to the batch server or servers.

The list or print subcommands of qmgr can be executed by general users. Creating or deleting a queue
requries PBS Manager privilege. Setting or unsetting server or queue attributes requires PBS Operator or
Manager privilege. NOTE: by default the user root is the only PBS Operator and Manager. To allow other
users to be privileged, the server attributes operators and managers will need to be set (i.e., as root,
issue 'qmgr -c 'set server managers += <USER1>@<HOST>'). See PBS Access Config for more information.

If qmgr is invoked without the -c option and standard output is connected to a terminal, qmgr will write a
prompt to standard output and read a directive from standard input.

Commands can be abbreviated to their minimum unambiguous form. A command is terminated by a new line
character or a semicolon, ";", character. Multiple commands may be entered on a single line. A command
may extend across lines by escaping the new line character with a back-slash "\".

Comments begin with the # character and continue to end of the line. Comments and blank lines are ignored
by qmgr.

Options

-a
Abort qmgr on any syntax errors or any requests rejected by a server.

-c command
Execute a single command and exit qmgr.

-e
Echo all commands to standard output.

-n
No commands are executed, syntax checking only is performed.

-z
No errors are written to standard error.

Operands

The server operands identify the name of the batch server to which the administrator requests are sent. Each
server conforms to the following syntax:
host_name[:port]
where host_name is the network name of the host on which the server is running and port is the port
number to which to connect. If port is not specified, the default port number is used.

If server is not specified, the administrator requests are sent to the local server.

Standard Input

The qmgr command reads standard input for directives until end of file is reached, or the exit or quit
directive is read.

http://semper/resources/docs/mwm/pbsaccess.php

Standard Output

If Standard Output is connected to a terminal, a command prompt will be written to standard output when
qmgr is ready to read a directive.

If the -e option is specified, qmgr will echo the directives read from standard input to standard output.

Standard Error

If the -z option is not specified, the qmgr command will write a diagnostic message to standard error for
each error occurrence.

Directive Syntax

A qmgr directive is one of the following forms:
command server [names] [attr OP value[,attr OP value,...]]
command queue [names] [attr OP value[,attr OP value,...]]
command node [names] [attr OP value[,attr OP value,...]]
where "command" is the command to perform on a object. Commands are:

active
sets the active objects. If the active objects are specified, and the name is not given in a qmgr cmd
the active object names will be used.

create
is to create a new object, applies to queues and nodes.

delete
is to destroy an existing object, applies to queues and nodes.

set
is to define or alter attribute values of the object.

unset
is to clear the value of attributes of the object. Note, this form does not accept an OP and value, only
the attribute name.

list
is to list the current attributes and associated values of the object.

print
is to print all the queue and server attributes in a format that will be usable as input to the qmgr
command.

names
is a list of one or more names of specific objects The name list is in the form:
 [name][@server][,queue_name[@server]...]
with no intervening white space. The name of an object is declared when the object is first created. If
the name is @server, then all the objects of specified type at the server will be effected.

attr
specifies the name of an attribute of the object which is to be set or modified. If the attribute is one
which consist of a set of resources, then the attribute is specified in the form:
 attribute_name.resource_name

OP
operation to be performed with the attribute and its value:

=
set the value of the attribute. If the attribute has a existing value, the current value is replaced
with the new value.

+=
increase the current value of the attribute by the amount in the new value.

-=
decrease the current value of the attribute by the amount in the new value.

value
the value to assign to an attribute. If the value includes white space, commas or other special
characters, such as the # character, the value string must be inclosed in quote marks (").

The following are examples of qmgr directives:

create queue fast priority=10,queue_type=e,enabled =

Exit Status

Upon successful processing of all the operands presented to the qmgr command, the exit status will be a
value of zero.

If the qmgr command fails to process any operand, the command exits with a value greater than zero.

See Also

pbs_server (8B), pbs_queue_attributes (7B), pbs_server_attributes (7B), qstart (8B), qstop (8B), qenable
(8B), qdisable (8), and the PBS External Reference Specification

true,max_running=0
set queue fast max_running +=2
create queue little
set queue little resources_max.mem=8mw,resources_max.cput=10
unset queue fast max_running
set node state = "down,offline"
active server s1,s2,s3
list queue @server1
set queue max_running = 10 - uses active queues

qrerun
(rerun a batch job)

Synopsis
qrerun [{-f}] <JOBID>[<JOBID>] ...

Description

The qrerun command directs that the specified jobs are to be rerun if possible. To rerun a job is to
terminate the session leader of the job and return the job to the queued state in the execution queue in
which the job currently resides.

If a job is marked as not rerunable then the rerun request will fail for that job. If the mini-server running the
job is down, or it rejects the request, the Rerun Job batch request will return a failure unless -f is used.

Using -f violates IEEE Batch Processing Services Standard and should be handled with great care. It should
only be used under exceptional circumstances. The best practice is to fix the problem mini-server host and
let qrerun run normally. The nodes may need manual cleaning. See the -r option on the qsub and qalter
commands.

Options

-f
Force a rerun on a job.

Operands

The qrerun command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Standard Error

The qrerun command will write a diagnostic message to standard error for each error occurrence.

Exit Status

Upon successful processing of all the operands presented to the qrerun command, the exit status will be a
value of zero.

If the qrerun command fails to process any operand, the command exits with a value greater than zero.

Examples

Job 3233 will be re-run.

See Also

qsub(1B), qalter(1B), pbs_alterjob(3B), pbs_rerunjob(3B)

qrerun -f 15406

> qrerun 3233

qrls
(release hold on pbs batch jobs)

Synopsis
qrls [{-h <HOLD LIST>|-t <array_range>}] <JOBID>[<JOBID>] ...

Description

The qrls command removes or releases holds which exist on batch jobs.

A job may have one or more types of holds which make the job ineligible for execution. The types of holds
are USER, OTHER, and SYSTEM. The different types of holds may require that the user issuing the qrls
command have special privileges. A user may always remove a USER hold on their own jobs, but only
privileged users can remove OTHER or SYSTEM holds. An attempt to release a hold for which the user does
not have the correct privilege is an error and no holds will be released for that job.

If no -h option is specified, the USER hold will be released.

If the job has no execution_time pending, the job will change to the queued state. If an execution_time is
still pending, the job will change to the waiting state.

Options

-h hold_list
Defines the types of hold to be released from the jobs. The hold_list option argument is a string
consisting of one or more of the letters "u", "o", and "s" in any combination. The hold type associated
with each letter is:

u - USER
o - OTHER
s - SYSTEM

-t array_range
The array_range argument is an integer id or a range of integers. Multiple ids or id ranges can be
combined in a comma delimted list. Examples: -t 1-100 or -t 1,10,50-100

If an array range isn't specified, the command tries to operate on the entire array. The command acts
on the array (or specified range of the array) just as it would on an individual job.

Operands

The qrls command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Examples

Standard Error

The qrls command will write a diagnostic message to standard error for each error occurrence.

Exit Status

Upon successful processing of all the operands presented to the qrls command, the exit status will be a value

> qrls -h u 3233 release user hold on job 3233

of zero.

If the qrls command fails to process any operand, the command exits with a value greater than zero.

See Also
qsub(1B), qalter(1B), qhold(1B), pbs_alterjob(3B), pbs_holdjob(3B), and
pbs_rlsjob(3B).

qrun
(run a batch job)

Synopsis
qrun [{-H <HOST>|-a}] <JOBID>[<JOBID>] ...

Overview

The qrun command runs a job.

Format

-H

Format: <STRING> Host Identifier

Default: ---

Description: specifies the host within the cluster on which the job(s) are to be run. The host argument is
the name of a host that is a member of the cluster of hosts managed by the server. If the
option is not specified, the server will select the "worst possible" host on which to execute the
job.

Example:

-a

Format: ---

Default: ---

Description: run the job(s) asynchronously.

Example:

Command Details

 The qrun command is used to force a batch server to initiate the execution of a batch job. The job is run
regardless of scheduling position or resource requirements.

 In order to execute qrun, the user must have PBS Operation or Manager privileges.

Examples

Run job 3233.

qrun -H hostname 15406

qrun -a 15406

> qrun 3233

qsig
(signal a job)

Synopsis
qsig [{-s <SIGNAL>}] <JOBID>[<JOBID>] ...
 [-a]

Description

The qsig command requests that a signal be sent to executing batch jobs. The signal is sent to the session
leader of the job. If the -s option is not specified, SIGTERM is sent. The request to signal a batch job will be
rejected if:

The user is not authorized to signal the job.
The job is not in the running state.
The requested signal is not supported by the system upon which the job is executing.

The qsig command sends a Signal Job batch request to the server which owns the job.

Options

-s signal
Declares which signal is sent to the job.

The signal argument is either a signal name, e.g. SIGKILL, the signal name without the SIG prefix,
e.g. KILL, or a unsigned signal number, e.g. 9. The signal name SIGNULL is allowed; the server will
send the signal 0 to the job which will have no effect on the job, but will cause an obituary to be sent if
the job is no longer executing. Not all signal names will be recognized by qsig. If it doesnt recognize
the signal name, try issuing the signal number instead.

Two special signal names, "suspend" and "resume", are used to suspend and resume jobs. Cray
systems use the Cray-specific suspend()/resume() calls.

On non-Cray system, suspend causes a SIGTSTP to be sent to all processes in the job's top task, wait
5 seconds, and then send a SIGSTOP to all processes in all tasks on all nodes in the job. This differs
from TORQUE 2.0.0 which did not have the ability to propogate signals to sister nodes. Resume sends
a SIGCONT to all processes in all tasks on all nodes.

When suspended, a job continues to occupy system resources but is not executing and is not charged
for walltime. The job will be listed in the "S" state. Manager or operator privilege is required to
suspend or resume a job.

Note that interactive jobs may not resume properly because the top-level shell will background the
suspended child process.

-a asynchronously
Makes the command run asynchronously.

Operands

The qsig command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Examples

> qsig -s SIGKILL 3233 send a SIGKILL to job 3233
> qsig -s KILL 3233 send a SIGKILL to job 3233
> qsig -s 9 3233 send a SIGKILL to job 3233

Standard Error

The qsig command will write a diagnostic messages to standard error for each error occurrence.

Exit Status

Upon successful processing of all the operands presented to the qsig command, the exit status will be a value
of zero.

If the qsig command fails to process any operand, the command exits with a value greater than zero.

See Also
 qsub(1B), pbs_sigjob(3B), pbs_resources_*(7B) where * is system type,
 and the PBS ERS.

qstat
show status of pbs batch jobs

Synopsis
qstat [-f [-1]][-W site_specific] [job_identifier... | destination...] [time]

qstat [-a|-i|-r|-e] [-n [-1]] [-s] [-G|-M] [-R] [-u user_list]
 [job_identifier... | destination...]

qstat -Q [-f [-1]][-W site_specific] [destination...]

qstat -q [-G|-M] [destination...]

qstat -B [-f [-1]][-W site_specific] [server_name...]

qstat -t

Description

The qstat command is used to request the status of jobs, queues, or a batch server. The requested status is
written to standard out.

When requesting job status, synopsis format 1 or 2, qstat will output information about each job_identifier or
all jobs at each destination. Jobs for which the user does not have status privilege are not displayed.

When requesting queue or server status, synopsis format 3 through 5, qstat will output information about
each destination.

Options

-f
Specifies that a full status display be written to standard out. The [time] value is the amount of
walltime, in seconds, remaining for the job. [time] does not account for walltime multipliers.

-a
All jobs are displayed in the alternative format, see the Standard Output section. If the operand is a
destination id, all jobs at that destination are displayed. If the operand is a job id, information about
that job is displayed.

-e
If the operand is a job id or not specified, only jobs in executable queues are displayed. Setting the
PBS_QSTAT_EXECONLY environment variable will also enable this option.

-i
Job status is displayed in the alternative format. For a destination id operand, status for jobs at that
destination which are not running are displayed. This includes jobs which are queued, held or waiting.
If an operand is a job id, status for that job is displayed regardless of its state.

-r
If an operand is a job id, status for that job is displayed. For a destination id operand, status for jobs
at that destination which are running are displayed, this includes jobs which are suspended.

-n
In addition to the basic information, nodes allocated to a job are listed.

-1
In combination with -n, the -1 option puts all of the nodes on the same line as the job ID. In
combination with -f, attributes are not folded to fit in a terminal window. This is intended to ease the
parsing of the qstat output.

-s
In addition to the basic information, any comment provided by the batch administrator or scheduler is
shown.

-G
Show size information in giga-bytes.

-M
Show size information, disk or memory in mega-words. A word is considered to be 8 bytes.

-R
In addition to other information, disk reservation information is shown. Not applicable to all systems.

-t
Normal qstat output displays a summary of the array instead of the entire array, job for job. qstat -t
expands the output to display the entire array. Note that arrays are now named with brackets
following the array name; for example:

dbeer@napali:~/dev/torque/array_changes$ echo sleep 20 | qsub -t 0-299 189[].napali

Individual jobs in the array are now also noted using square brackets instead of dashes; for example,
here is part of the output of qstat -t for the preceding array:

189[299].napali STDIN[299] dbeer 0 Q batch
-u

Job status is displayed in the alternative format. If an operand is a job id, status for that job is
displayed. For a destination id operand, status for jobs at that destination which are owned by the
user(s) listed in user_list are displayed. The syntax of the user_list is:

user_name[@host][,user_name[@host],...]

Host names may be wild carded on the left end, e.g. "*.nasa.gov". User_name without a "@host" is
equivalent to "user_name@*", that is at any host.

-Q
Specifies that the request is for queue status and that the operands are destination identifiers.

-q
Specifies that the request is for queue status which should be shown in the alternative format.

-B
Specifies that the request is for batch server status and that the operands are the names of servers.

Operands

If neither the -Q nor the -B option is given, the operands on the qstat command must be either job identifiers
or destinations identifiers.

If the operand is a job identifier, it must be in the following form:

sequence_number[.server_name][@server]

where sequence_number.server_name is the job identifier assigned at submittal time, see qsub. If the
.server_name is omitted, the name of the default server will be used. If @server is supplied, the request will
be for the job identifier currently at that Server.

If the operand is a destination identifier, it is one of the following three forms:

queue
@server
queue@server

If queue is specified, the request is for status of all jobs in that queue at the default server. If the @server
form is given, the request is for status of all jobs at that server. If a full destination identifier, queue@server,
is given, the request is for status of all jobs in the named queue at the named server.

If the -Q option is given, the operands are destination identifiers as specified above. If queue is specified, the
status of that queue at the default server will be given. If queue@server is specified, the status of the named
queue at the named server will be given. If @server is specified, the status of all queues at the named server
will be given. If no destination is specified, the status of all queues at the default server will be given.

If the -B option is given, the operand is the name of a server.

Standard Output

Displaying Job Status

If job status is being displayed in the default format and the -f option is not specified, the following items are
displayed on a single line, in the specified order, separated by white space:

the job identifier assigned by PBS.
the job name given by the submitter.
the job owner.
he CPU time used.
the job state:

C
Job is completed after having run

E
Job is exiting after having run.

H
Job is held.

Q
job is queued, eligible to run or routed.

R
job is running.

T
job is being moved to new location.

W
job is waiting for its execution time (-a option) to be reached.

S
(Unicos only) job is suspended.

the queue in which the job resides.

If job status is being displayed and the -f option is specified, the output will depend on whether qstat was
compiled to use a Tcl interpreter. See the configuration section for details. If Tcl is not being used, full display
for each job consists of the header line:

Job Id: job identifier

Followed by one line per job attribute of the form:

attribute_name = value

If any of the options -a, -i, -r, -u, -n, -s, -G or -M are provided, the alternative display format for jobs is
used. The following items are displayed on a single line, in the specified order, separated by white space:

the job identifier assigned by PBS.
the job owner.
The queue in which the job currently resides.
The job name given by the submitter.
The session id (if the job is running).
The number of nodes requested by the job.
The number of cpus or tasks requested by the job.
The amount of memory requested by the job.
Either the cpu time, if specified, or wall time requested by the job, (hh:mm).
The jobs current state.
The amount of cpu time or wall time used by the job (hh:mm).

If the -R option is provided, the line contains:

the job identifier assigned by PBS.
the job owner.
The queue in which the job currently resides.
The number of nodes requested by the job.
The number of cpus or tasks requested by the job.
The amount of memory requested by the job.
Either the cpu time or wall time requested by the job.
The jobs current state.
The amount of cpu time or wall time used by the job.
The amount of SRFS space requested on the big file system.
The amount of SRFS space requested on the fast file system.
The amount of space requested on the parallel I/O file system.

The last three fields may not contain useful information at all sites or on all systems.

Displaying Queue Status

If queue status is being displayed and the -f option was not specified, the following items are displayed on a
single line, in the specified order, separated by white space:

the queue name.
the maximum number of jobs that may be run in the queue concurrently.
the total number of jobs in the queue.
the enable or disabled status of the queue.
the started or stopped status of the queue.
for each job state, the name of the state and the number of jobs in the queue in that state.
the type of queue, execution or routing.

If queue status is being displayed and the -f option is specified, the output will depend on whether qstat was
compiled to use a Tcl interpreter. See the configuration section for details. If Tcl is not being used, the full
display for each queue consists of the header line:

Queue: queue_name

Followed by one line per queue attribute of the form:

attribute_name = value

If the -q option is specified, queue information is displayed in the alternative format: The following
information is displayed on a single line:

the queue name.
the maximum amount of memory a job in the queue may request.
the maximum amount of cpu time a job in the queue may request.
the maximum amount of wall time a job in the queue may request.
the maximum amount of nodes a job in the queue may request.
the number of jobs in the queue in the running state.
the number of jobs in the queue in the queued state.
the maximum number (limit) of jobs that may be run in the queue concurrently.
the state of the queue given by a pair of letters:

either the letter E if the queue is Enabled or D if Disabled
and
either the letter R if the queue is Running (started) or S if Stopped.

Displaying Server Status

If batch server status is being displayed and the -f option is not specified, the following items are displayed
on a single line, in the specified order, separated by white space:

the server name.
the maximum number of jobs that the server may run concurrently.
the total number of jobs currently managed by the server.
the status of the server.
for each job state, the name of the state and the number of jobs in the server in that state.

If server status is being displayed and the -f option is specified, the output will depend on whether qstat was
compiled to use a Tcl interpreter. See the configuration section for details. If Tcl is not being used, the full
display for the server consist of the header line:

Server: server name

Followed by one line per server attribute of the form:

attribute_name = value

Standard Error

The qstat command will write a diagnostic message to standard error for each error occurrence.

Configuration

If qstat is compiled with an option to include a Tcl interpreter, using the -f flag to get a full display causes a
check to be made for a script file to use to output the requested information. The first location checked is
$HOME/.qstatrc. If this does not exist, the next location checked is administrator configured. If one of these is
found, a Tcl interpreter is started and the script file is passed to it along with three global variables. The
command line arguments are split into two variable named flags and operands . The status information is
passed in a variable named objects . All of these variables are Tcl lists. The flags list contains the name of the
command (usually "qstat") as its first element. Any other elements are command line option flags with any
options they use, presented in the order given on the command line. They are broken up individually so that
if two flags are given together on the command line, they are separated in the list. For example, if the user
typed:

qstat -QfWbigdisplay

the flags list would contain

qstat -Q -f -W bigdisplay

The operands list contains all other command line arguments following the flags. There will always be at least
one element in operands because if no operands are typed by the user, the default destination or server
name is used. The objects list contains all the information retrieved from the server(s) so the Tcl interpreter
can run once to format the entire output. This list has the same number of elements as the operands list.
Each element is another list with two elements.

The first element is a string giving the type of objects to be found in the second. The string can take the
values "server", "queue", "job" or "error".

The second element will be a list in which each element is a single batch status object of the type given by
the string discussed above. In the case of "error", the list will be empty. Each object is again a list. The first
element is the name of the object. The second is a list of attributes.

The third element will be the object text.

All three of these object elements correspond with fields in the structure batch_status which is described in
detail for each type of object by the man pages for pbs_statjob(3), pbs_statque(3), and pbs_statserver(3).
Each attribute in the second element list whose elements correspond with the attrl structure. Each will be a
list with two elements. The first will be the attribute name and the second will be the attribute value.

Exit Status

Upon successful processing of all the operands presented to the qstat command, the exit status will be a
value of zero.

If the qstat command fails to process any operand, the command exits with a value greater than zero.

See Also:

qalter(1B)
qsub(1B)
pbs_alterjob(3B)
pbs_statjob(3B)
pbs_statque(3B)
pbs_statserver(3B)
pbs_submit(3B)
pbs_job_attributes(7B)
pbs_queue_attributes(7B)
pbs_server_attributes(7B)

qmgr query_other_jobs parameter (allow non-admin users to see other users' jobs
pbs_resources_*(7B) where * is system type
PBS ERS

qsub
submit pbs job

Synopsis
qsub [-a date_time] [-A account_string] [-b secs] [-c checkpoint_options]
 [-C directive_prefix] [-d path] [-D path] [-e path] [-f] [-F] [-h]
 [-I] [-j join] [-k keep] [-l resource_list]
 [-m mail_options] [-M user_list] [-n] [-N name] [-o path]
 [-p priority] [-P user[:group]] [-q destination] [-r c] [-S path_list]
 [-t array_request] [-u user_list]
 [-v variable_list] [-V] [-W additional_attributes] [-X] [-z] [script]

Description

To create a job is to submit an executable script to a batch server. The batch server will be the default server
unless the -q option is specified. The command parses a script prior to the actual script execution; it does
not execute a script itself. All script-writing rules remain in effect, including the "#!" at the head of the file.
See discussion of PBS_DEFAULT under Environment Variables below. Typically, the script is a shell script
which will be executed by a command shell such as sh or csh.

Options on the qsub command allow the specification of attributes which affect the behavior of the job.

The qsub command will pass certain environment variables in the Variable_List attribute of the job. These
variables will be available to the job. The value for the following variables will be taken from the environment
of the qsub command: HOME, LANG, LOGNAME, PATH, MAIL, SHELL, and TZ. These values will be assigned to
a new name which is the current name prefixed with the string "PBS_O_". For example, the job will have
access to an environment variable named PBS_O_HOME which have the value of the variable HOME in the
qsub command environment.

In addition to the above, the following environment variables will be available to the batch job.

PBS_O_HOST
the name of the host upon which the qsub command is running.

PBS_SERVER
the hostname of the pbs_server which qsub submits the job to.

PBS_O_QUEUE
the name of the original queue to which the job was submitted.

PBS_O_WORKDIR
the absolute path of the current working directory of the qsub command.

PBS_ARRAYID
each member of a job array is assigned a unique identifier (see -t).

PBS_ENVIRONMENT
set to PBS_BATCH to indicate the job is a batch job, or to PBS_INTERACTIVE to indicate the job is a
PBS interactive job, see -I option.

PBS_JOBID
the job identifier assigned to the job by the batch system. It can be used in the stdout and stderr
paths. TORQUE replaces $PBS_JOBID with the job's jobid (for example, #PBS -o
/tmp/$PBS_JOBID.output).

PBS_JOBNAME
the job name supplied by the user.

PBS_NODEFILE
the name of the file contain the list of nodes assigned to the job (for parallel and cluster systems).

PBS_QUEUE
the name of the queue from which the job is executed.

Options

-a date_time
Declares the time after which the job is eligible for execution.

The date_time argument is in the form:

[[[[CC]YY]MM]DD]hhmm[.SS]

Where CC is the first two digits of the year (the century), YY is the second two digits of the year, MM is
the two digits for the month, DD is the day of the month, hh is the hour, mm is the minute, and the
optional SS is the seconds.

If the month, MM, is not specified, it will default to the current month if the specified day DD, is in the
future. Otherwise, the month will be set to next month. Likewise, if the day, DD, is not specified, it will
default to today if the time hhmm is in the future. Otherwise, the day will be set to tomorrow. For
example, if you submit a job at 11:15am with a time of -a 1110, the job will be eligible to run at
11:10am tomorrow.

-A account_string
Defines the account string associated with the job. The account_string is an undefined string of
characters and is interpreted by the server which executes the job. See section 2.7.1 of the PBS ERS.

-b seconds
Defines the maximum number of seconds qsub will block attempting to contact pbs_server. If
pbs_server is down, or for a variety of communication failures, qsub will continually retry connecting to
pbs_server for job submission. This value overrides the CLIENTRETRY parameter in torque.cfg. This is
a non-portable TORQUE extension. Portability-minded users can use the PBS_CLIENTRETRY
environmental variable. A negative value is interpreted as infinity. The default is 0.

-c checkpoint_options
Defines the options that will apply to the job. If the job executes upon a host which does not support
checkpoint, these options will be ignored.

Valid checkpoint options are:

none
No checkpointing is to be performed.

enabled
Specify that checkpointing is allowed but must be explicitly invoked by either the qhold or
qchkpt commands.

shutdown
Specify that checkpointing is to be done on a job at pbs_mom shutdown.

periodic
Specify that periodic checkpointing is enabled. The default interval is 10 minutes and can
be changed by the $checkpoint_interval option in the MOM config file or by specifying an
interval when the job is submitted

interval=minutes
Checkpointing is to be performed at an interval of minutes, which is the integer number of
minutes of wall time used by the job. This value must be greater than zero.

depth=number
Specify a number (depth) of checkpoint images to be kept in the checkpoint directory.

dir=path
Specify a checkpoint directory (default is /var/spool/torque/checkpoint).

-C directive_prefix
Defines the prefix that declares a directive to the qsub command within the script file. See the
paragraph on script directives in the Extended Description section.

If the -C option is presented with a directive_prefix argument that is the null string, qsub will not scan
the script file for directives.

-d path
Defines the working directory path to be used for the job. If the -d option is not specified, the default
working directory is the home directory. This option sets the environment variable PBS_O_INITDIR.

-D path
Defines the root directory to be used for the job. This option sets the environment variable
PBS_O_ROOTDIR.

-e path
Defines the path to be used for the standard error stream of the batch job. The path argument is of
the form:

[hostname:]path_name

Where hostname is the name of a host to which the file will be returned and path_name is the path
name on that host in the syntax recognized by POSIX. The argument will be interpreted as follows:

path_name
Where path_name is not an absolute path name, then the qsub command will expand the
path name relative to the current working directory of the command. The command will
supply the name of the host upon which it is executing for the hostname component.

hostname:path_name
Where path_name is not an absolute path name, then the qsub command will not expand
the path name relative to the current working directory of the command. On delivery of
the standard error, the path name will be expanded relative to the users home directory
on the hostname system.

path_name
Where path_name specifies an absolute path name, then the qsub will supply the name of
the host on which it is executing for the hostname.

hostname:path_name
Where path_name specifies an absolute path name, the path will be used as specified.

If the -e option is not specified, the default file name for the standard error stream will be used. The
default name has the following form:

job_name.esequence_number

where job_name is the name of the job, see -N option, and sequence_number is the job number
assigned when the job is submitted.

-f
Job is made fault tolerant. Jobs running on multiple nodes are periodically polled by mother superior. If
one of the nodes fails to report, the job is canceled by mother superior and a failure is reported. If a
job is fault tolerant, it will not be canceled based on failed polling (no matter how many nodes fail to
report). This may be desirable if transient network failures are causing large jobs not to complete,
where ignoring one failed polling attempt can be corrected at the next polling attempt.

If TORQUE is compiled with PBS_NO_POSIX_VIOLATION (there is no config option for this), you
have to use -W fault_tolerant=true to mark the job as fault tolerant.

-F
Specfies the arguments that will be passed to the job script when the script is launched. The accepted
syntax is:

qsub -F "myarg1 myarg2 myarg3=myarg3value" myscript2.sh

Quotation marks are required. qsub will fail with an error message if the argument following -F
is not a quoted value. The pbs_mom server will pass the quoted value as arguments to the job
script when it launches the script.

-h
Specifies that a user hold be applied to the job at submission time.

-I
Declares that the job is to be run "interactively". The job will be queued and scheduled as any PBS
batch job, but when executed, the standard input, output, and error streams of the job are connected

through qsub to the terminal session in which qsub is running. Interactive jobs are forced to not
rerunable. See the "Extended Description" paragraph for additional information of interactive jobs.

-j join
Declares if the standard error stream of the job will be merged with the standard output stream of the
job.

An option argument value of oe directs that the two streams will be merged, intermixed, as standard
output. An option argument value of eo directs that the two streams will be merged, intermixed, as
standard error.

If the join argument is n or the option is not specified, the two streams will be two separate files.

-k keep
Defines which (if either) of standard output or standard error will be retained on the execution host. If
set for a stream, this option overrides the path name for that stream. If not set, neither stream is
retained on the execution host.

The argument is either the single letter "e" or "o", or the letters "e" and "o" combined in either order.
Or the argument is the letter "n".

e
The standard error stream is to retained on the execution host. The stream will be placed
in the home directory of the user under whose user id the job executed. The file name will
be the default file name given by:

job_name.esequence
where job_name is the name specified for the job, and sequence is the sequence number
component of the job identifier.

o
The standard output stream is to retained on the execution host. The stream will be
placed in the home directory of the user under whose user id the job executed. The file
name will be the default file name given by:

job_name.osequence
where job_name is the name specified for the job, and sequence is the sequence number
component of the job identifier.

eo
Both the standard output and standard error streams will be retained.

oe
Both the standard output and standard error streams will be retained.

n
Neither stream is retained.

-l resource_list
Defines the resources that are required by the job and establishes a limit to the amount of resource
that can be consumed. If not set for a generally available resource, such as CPU time, the limit is
infinite. The resource_list argument is of the form:

resource_name[=[value]][,resource_name[=[value]],...]

In this situation, you should request the more inclusive resource first. For example, a request for
procs should come before a gres request.

In TORQUE 3.0.2 or later, qsub supports the mapping of -l gpus=X to -l gres=gpus:X. This allows
users who are using NUMA systems to make requests such as -l ncpus=20,gpus=5 indicating they
are not concerned with the GPUs in relation to the NUMA nodes they request, they only want a total of
20 cores and 5 GPUs.

-m mail_options
Defines the set of conditions under which the execution server will send a mail message about the job.
The mail_options argument is a string which consists of either the single character "n", or one or more
of the characters "a", "b", and "e".

If the character "n" is specified, no normal mail is sent. Mail for job cancels and other events outside of
normal job processing are still sent.

For the letters "a", "b", and "e":

a
mail is sent when the job is aborted by the batch system.

b
mail is sent when the job begins execution.

e
mail is sent when the job terminates.

If the -m option is not specified, mail will be sent if the job is aborted.

-M user_list
Declares the list of users to whom mail is sent by the execution server when it sends mail about the
job.

The user_list argument is of the form:

user[@host][,user[@host],...]

If unset, the list defaults to the submitting user at the qsub host, i.e. the job owner.

-n node-exclusive
Allows a user to specify an exclusive-node access/allocation request for the job. This affects only
cpusets and compatible schedulers.

-N name
Declares a name for the job. The name specified may be up to and including 15 characters in length. It
must consist of printable, non white space characters with the first character alphabetic.

If the -N option is not specified, the job name will be the base name of the job script file specified on
the command line. If no script file name was specified and the script was read from the standard
input, then the job name will be set to STDIN.

-o path
Defines the path to be used for the standard output stream of the batch job. The path argument is of
the form:

[hostname:]path_name

where hostname is the name of a host to which the file will be returned and path_name is the path
name on that host in the syntax recognized by POSIX. The argument will be interpreted as follows:

path_name
Where path_name is not an absolute path name, then the qsub command will expand the
path name relative to the current working directory of the command. The command will
supply the name of the host upon which it is executing for the hostname component.

hostname:path_name
Where path_name is not an absolute path name, then the qsub command will not expand
the path name relative to the current working directory of the command. On delivery of
the standard output, the path name will be expanded relative to the users home directory
on the hostname system.

path_name
Where path_name specifies an absolute path name, then the qsub will supply the name of
the host on which it is executing for the hostname.

hostname:path_name
Where path_name specifies an absolute path name, the path will be used as specified.

If the -o option is not specified, the default file name for the standard output stream will be used. The
default name has the following form:

job_name.osequence_number

where job_name is the name of the job, see -N option, and sequence_number is the job number
assigned when the job is submitted.

-p priority
Defines the priority of the job. The priority argument must be a integer between -1024 and +1023
inclusive. The default is no priority which is equivalent to a priority of zero.

-P user[:group]
Allows a root user to submit a job as another user. TORQUE treats proxy jobs as though the jobs were
submitted by the supplied username. This feature is available in TORQUE 2.4.7 and later, however,
TORQUE 2.4.7 does not have the ability to supply the [:group] option. The [:group] option is available
in TORQUE 2.4.8 and later.

-q destination
Defines the destination of the job. The destination names a queue, a server, or a queue at a server.

The qsub command will submit the script to the server defined by the destination argument. If the
destination is a routing queue, the job may be routed by the server to a new destination.

If the -q option is not specified, the qsub command will submit the script to the default server. See
PBS_DEFAULT under the Environment Variables section on this man page and the PBS ERS section
2.7.4, "Default Server".

If the -q option is specified, it is in one of the following three forms:

queue
@server
queue@server

If the destination argument names a queue and does not name a server, the job will be submitted to
the named queue at the default server.

If the destination argument names a server and does not name a queue, the job will be submitted to
the default queue at the named server.

If the destination argument names both a queue and a server, the job will be submitted to the named
queue at the named server.

-r y|n
Declares whether the job is rerunable. See the qrerun command. The option argument is a single
character, either y or n.dd

If the argument is "y", the job is rerunable. If the argument is "n", the job is not rerunable. The
default value is y, rerunable.

-S path_list
Declares the shell that interprets the job script.

The option argument path_list is in the form:

path[@host][,path[@host],...]

Only one path may be specified for any host named. Only one path may be specified without the
corresponding host name. The path selected will be the one with the host name that matched the
name of the execution host. If no matching host is found, then the path specified without a host will be
selected, if present.

If the -S option is not specified, the option argument is the null string, or no entry from the path_list is
selected, the execution will use the users login shell on the execution host.

-t array_request
Specifies the task ids of a job array. Single task arrays are allowed.

The array_request argument is an integer id or a range of integers. Multiple ids or id ranges can be
combined in a comma delimted list. Examples: -t 1-100 or -t 1,10,50-100.

An optional slot limit can be specified to limit the amount of jobs that can run concurrently in the job
array. The default value is unlimited. The slot limit must be the last thing specified in the
array_request and is delimited from the array by a percent sign (%).

This sets the slot limit to 5. Only 5 jobs from this array can run at the same time.

You can use qalter to modify slot limits on an array. The server parameter max_slot_limit can be used
to set a global slot limit policy.

-u user_list
Defines the user name under which the job is to run on the execution system.

The user_list argument is of the form:

user[@host][,user[@host],...]

Only one user name may be given per specified host. Only one of the user specifications may be
supplied without the corresponding host specification. That user name will used for execution on any
host not named in the argument list. If unset, the user list defaults to the user who is running qsub.

-v variable_list
Expands the list of environment variables that are exported to the job.

In addition to the variables described in the "Description" section above, variable_list names
environment variables from the qsub command environment which are made available to the job when
it executes. The variable_list is a comma separated list of strings of the form variable or
variable=value. These variables and their values are passed to the job.

-V
Declares that all environment variables in the qsub commands environment are to be exported to the
batch job.

-W additional_attributes
The -W option allows for the specification of additional job attributes. The general syntax of the -W is
in the form:

-W attr_name=attr_value[,attr_name=attr_value...]

Note if white space occurs anywhere within the option argument string or the equal sign, "=", occurs
within an attribute_value string, then the string must be enclosed with either single or double quote
marks.

PBS currently supports the following attributes within the -W option.

depend=dependency_list
Defines the dependency between this and other jobs. The dependency_list is in the
form:

type[:argument[:argument...][,type:argument...]

The argument is either a numeric count or a PBS job id according to type. If
argument is a count, it must be greater than 0. If it is a job id and not fully
specified in the form seq_number.server.name, it will be expanded according to the
default server rules which apply to job IDs on most commands. If argument is null
(the preceding colon need not be specified), the dependency of the corresponding
type is cleared (unset). These are the valid dependencies:

synccount:count
This job is the first in a set of jobs to be executed at the same time. Count is the
number of additional jobs in the set.

syncwith:jobid
This job is an additional member of a set of jobs to be executed at the same time.
In the above and following dependency types, jobid is the job identifier of the first
job in the set.

after:jobid[:jobid...]
This job may be scheduled for execution at any point after jobs jobid have started
execution.

afterok:jobid[:jobid...]

qsub script.sh -t 0-299%5

This job may be scheduled for execution only after jobs jobid have terminated with
no errors. See the csh warning under "Extended Description".

afternotok:jobid[:jobid...]
This job may be scheduled for execution only after jobs jobid have terminated with
errors. See the csh warning under "Extended Description".

afterany:jobid[:jobid...]
This job may be scheduled for execution after jobs jobid have terminated, with or
without errors.

on:count
This job may be scheduled for execution after count dependencies on other jobs
have been satisfied. This form is used in conjunction with one of the before forms,
see below.

before:jobid[:jobid...]
When this job has begun execution, then jobs jobid... may begin.

beforeok:jobid[:jobid...]
If this job terminates execution without errors, then jobs jobid... may begin. See
the csh warning under "Extended Description".

beforenotok:jobid[:jobid...]
If this job terminates execution with errors, then jobs jobid... may begin. See the
csh warning under "Extended Description".

beforeany:jobid[:jobid...]
When this job terminates execution, jobs jobid... may begin.

If any of the before forms are used, the jobs referenced by jobid must have been
submitted with a dependency type of on.

If any of the before forms are used, the jobs referenced by jobid must have the
same owner as the job being submitted. Otherwise, the dependency is ignored.

Array dependencies make a job depend on an array or part of an array. If no count is given,
then the entire array is assumed. Array dependency examples are here.

afterstartarray:arrayid[count]
After this many jobs have started from arrayid, this job may start.

afterokarray:arrayid[count]
This job may be scheduled for execution only after jobs in arrayid have terminated
with no errors.

afternotokarray:arrayid[count]
This job may be scheduled for execution only after jobs in arrayid have terminated
with errors.

afteranyarray:arrayid[count]
This job may be scheduled for execution after jobs in arrayid have terminated, with
or without errors.

beforestartarray:arrayid[count]
Before this many jobs have started from arrayid, this job may start.

beforeokarray:arrayid[count]
If this job terminates execution without errors, then jobs in arrayid may begin.

beforenotokarray:arrayid[count]
If this job terminates execution with errors, then jobs in arrayid may begin.

beforeanyarray:arrayid[count]
When this job terminates execution, jobs in arrayid may begin.

If any of the before forms are used, the jobs referenced by arrayid must have been
submitted with a dependency type of on. If any of the before forms are used, the
jobs referenced by arrayid must have the same owner as the job being submitted.
Otherwise, the dependency is ignored.

Error processing of the existence, state, or condition of he job on which the newly
submitted job is a deferred service, i.e. the check is performed after the job is queued. If
an error is detected, the new job will be deleted by the server. Mail will be sent to the job
submitter stating the error.

Dependency examples:

qsub -W depend=afterok:123.big.iron.com /tmp/script
qsub -W depend=before:234.hunk1.com:235.hunk1.com

/tmp/script
qsub script.sh -W depend=afterokarray:427[]
This assumes every job in array 427 has to finish successfully for the dependency
to be satisfied.
qsub script.sh -W depend=afterokarray:427[][5]
This means that 5 of the jobs in array 427 have to successfully finish in order for
the dependency to be satisfied.

group_list=g_list
Defines the group name under which the job is to run on the execution system. The g_list
argument is of the form:

group[@host][,group[@host],...]

Only one group name may be given per specified host. Only one of the group
specifications may be supplied without the corresponding host specification. That group
name will used for execution on any host not named in the argument list. If not set, the
group_list defaults to the primary group of the user under which the job will be run.

interactive=true
If the interactive attribute is specified, the job is an interactive job. The -I option is a
alternative method of specifying this attribute.

stagein=file_list
stageout=file_list

Specifies which files are staged (copied) in before job start or staged out after the job
completes execution. On completion of the job, all staged-in and staged-out files are
removed from the execution system. The file_list is in the form:

local_file@hostname:remote_file[,...]

regardless of the direction of the copy. The name local_file is the name of the file on the
system where the job executed. It may be an absolute path or relative to the home
directory of the user. The name remote_file is the destination name on the host specified
by hostname. The name may be absolute or relative to the users home directory on the
destination host. The use of wildcards in the file name is not recommended. The file
names map to a remote copy program (rcp) call on the execution system in the follow
manner:

For stagein: rcp hostname:remote_file local_file
For stageout: rcp local_file hostname:remote_file

Data staging examples:

-W stagein=/tmp/input.txt@headnode:/home/user/input.txt
-W stageout=/tmp/output.txt@headnode:/home/user/output.txt

If TORQUE has been compiled with wordexp support, then variables can be used in the
specified paths. Currently only $PBS_JOBID, $HOME, and $TMPDIR are supported for
stagein.

umask=XXX
Sets umask used to create stdout and stderr spool files in pbs_mom spool directory.
Values starting with 0 are treated as octal values, otherwise the value is treated as a
decimal umask value.

-X
Enables X11 forwarding. The DISPLAY environment variable must be set.

-z
Directs that the qsub command is not to write the job identifier assigned to the job to the commands
standard output.

Operands

The qsub command accepts a script operand that is the path to the script of the job. If the path is relative, it
will be expanded relative to the working directory of the qsub command.

If the script operand is not provided or the operand is the single character "-", the qsub command reads the
script from standard input. When the script is being read from Standard Input, qsub will copy the file to a
temporary file. This temporary file is passed to the library interface routine pbs_submit. The temporary file is
removed by qsub after pbs_submit returns or upon the receipt of a signal which would cause qsub to
terminate.

Standard Input

The qsub command reads the script for the job from standard input if the script operand is missing or is the
single character "-".

Input Files

The script file is read by the qsub command. Qsub acts upon any directives found in the script.

When the job is created, a copy of the script file is made and that copy cannot be modified.

Standard Output

Unless the -z option is set, the job identifier assigned to the job will be written to standard output if the job is
successfully created.

Standard Error

The qsub command will write a diagnostic message to standard error for each error occurrence.

Environment Variables

The values of some or all of the variables in the qsub commands environment are exported with the job, see
the -v and -V options.

The environment variable PBS_DEFAULT defines the name of the default server. Typically, it corresponds to
the system name of the host on which the server is running. If PBS_DEFAULT is not set, the default is defined
by an administrator established file.

The environment variable PBS_DPREFIX determines the prefix string which identifies directives in the script.

The environment variable PBS_CLIENTRETRY defines the maximum number of seconds qsub will block. See
the -b option above. Despite the name, currently qsub is the only client that supports this option.

TORQUE.cfg

The torque.cfg file, located in PBS_SERVER_HOME (/var/spool/torque by default) controls the behavior of the
qsub command. This file contains a list of parameters and values separated by whitespace

QSUBSLEEP takes an integer operand which specifies time to sleep when running qsub command. Used to
prevent users from overwhelming the scheduler.

SUBMITFILTER specifies the path to the submit filter used to pre-process job submission. The default path is
libexecdir/qsub_filter, which falls back to /usr/local/sbin/torque_submitfilter for backwards compatibility. This
torque.cfg parameter overrides this default.

SERVERHOST

QSUBHOST

QSUBSENDUID

XAUTHPATH

CLIENTRETRY

VALIDATEGROUP

DEFAULTCKPT

VALIDATEPATH

RERUNNABLEBYDEFAULT

For example:

QSUBSLEEP 2
RERUNNABLEBYDEFAULT false

Extended Description

Script Processing:

A job script may consist of PBS directives, comments and executable statements. A PBS directive provides a
way of specifying job attributes in addition to the command line options. For example:

:
#PBS -N Job_name
#PBS -l walltime=10:30,mem=320kb
#PBS -m be
#
step1 arg1 arg2
step2 arg3 arg4

The qsub command scans the lines of the script file for directives. An initial line in the script that begins with
the characters "#!" or the character ":" will be ignored and scanning will start with the next line. Scanning
will continue until the first executable line, that is a line that is not blank, not a directive line, nor a line
whose first non white space character is "#". If directives occur on subsequent lines, they will be ignored.

A line in the script file will be processed as a directive to qsub if and only if the string of characters starting
with the first non white space character on the line and of the same length as the directive prefix matches
the directive prefix.

The remainder of the directive line consists of the options to qsub in the same syntax as they appear on the
command line. The option character is to be preceded with the "-" character.

If an option is present in both a directive and on the command line, that option and its argument, if any, will
be ignored in the directive. The command line takes precedence.

If an option is present in a directive and not on the command line, that option and its argument, if any, will
be processed as if it had occurred on the command line.

The directive prefix string will be determined in order of preference from:

The value of the -C option argument if the option is specified on the command line.

The value of the environment variable PBS_DPREFIX if it is defined.

The four character string #PBS.

If the -C option is found in a directive in the script file, it will be ignored.

User Authorization:

When the user submits a job from a system other than the one on which the PBS Server is running, the
name under which the job is to be executed is selected according to the rules listed under the -u option. The
user submitting the job must be authorized to run the job under the execution user name. This authorization
is provided if:

The host on which qsub is run is trusted by the execution host (see /etc/hosts.equiv)
The execution user has an .rhosts file naming the submitting user on the submitting host.

C-Shell .logout File:

The following warning applies for users of the c-shell, csh. If the job is executed under the csh and a .logout
file exists in the home directory in which the job executes, the exit status of the job is that of the .logout
script, not the job script. This may impact any inter-job dependencies. To preserve the job exit status, either
remove the .logout file or place the following line as the first line in the .logout file

set EXITVAL = $status

and the following line as the last executable line in .logout

exit $EXITVAL

Interactive Jobs:

If the -I option is specified on the command line or in a script directive, or if the "interactive" job attribute
declared true via the -W option, -W interactive=true, either on the command line or in a script directive, the
job is an interactive job. The script will be processed for directives, but will not be included with the job.
When the job begins execution, all input to the job is from the terminal session in which qsub is running.

When an interactive job is submitted, the qsub command will not terminate when the job is submitted. Qsub
will remain running until the job terminates, is aborted, or the user interrupts qsub with an SIGINT (the
control-C key). If qsub is interrupted prior to job start, it will query if the user wishes to exit. If the user
response "yes", qsub exits and the job is aborted.

One the interactive job has started execution, input to and output from the job pass through qsub. Keyboard
generated interrupts are passed to the job. Lines entered that begin with the tilde (~) character and contain
special sequences are escaped by qsub. The recognized escape sequences are:

~.
Qsub terminates execution. The batch job is also terminated.

~susp
Suspend the qsub program if running under the C shell. "susp" is the suspend character, usually
CNTL-Z.

~asusp
Suspend the input half of qsub (terminal to job), but allow output to continue to be displayed.
Only works under the C shell. "asusp" is the auxiliary suspend character, usually CNTL-Y.

Exit Status

Upon successful processing, the qsub exit status will be a value of zero.

If the qsub command fails, the command exits with a value greater than zero.

See Also
qalter(1B), qdel(1B), qhold(1B), qmove(1B), qmsg(1B), qrerun(1B),
qrls(1B), qselect(1B), qsig(1B), qstat(1B), pbs_connect(3B),
pbs_job_attributes(7B), pbs_queue_attributes(7B),
pbs_resources_irix5(7B), pbs_resources_sp2(7B),
pbs_resources_sunos4(7B), pbs_resources_unicos8(7B),
pbs_server_attributes(7B), and pbs_server(8B)

qterm
terminate processing by a pbs batch server

Synopsis

qterm [-t type] [server...]

Description

The qterm command terminates a batch server. When a server receives a terminate command, the server
will go into the Terminating state. No new jobs will be allowed to be started into execution nor enqueued into
the server. The impact on jobs currently being run by the server depends

In order to execute qterm, the user must have PBS Operation or Manager privileges.

Options

-t type
Specifies the type of shut down. The types are:

immediate - All running jobs are to immediately stop execution. If checkpointing is supported,
running jobs that can be checkpointed are checkpointed, terminated, and requeued. If
checkpoint is not supported or the job cannot be checkpointed, running jobs are requeued if the
rerunable attribute is true. Otherwise, jobs are killed.

delay - If checkpointing is supported, running jobs that can be checkpointed are checkpointed,
terminated, and requeued. If a job cannot be checkpointed, but can be rerun, the job is
terminated and requeued. Otherwise, running jobs are allowed to continue to run. Note, the
operator or administrator may use the qrerun and qdel commands to remove running jobs.

quick - This is the default action if the -t option is not specified. This option is used when you
wish that running jobs be left running when the server shuts down. The server will cleanly
shutdown and can be restarted when desired. Upon restart of the server, jobs that continue to
run are shown as running; jobs that terminated during the server's absence will be placed into
the exiting state.

Operands

The server operand specifies which servers are to shutdown. If no servers are given, then the default server
will be terminated.

Standard Error

The qterm command will write a diagnostic message to standard error for each error occurrence.

Exit Status

Upon successful processing of all the operands presented to the qterm command, the exit status will be a
value of zero.

If the qterm command fails to process any operand, the command exits with a value greater than zero.

See Also
pbs_server(8B), qmgr(8B), pbs_resources_aix4(7B),
pbs_resources_irix5(7B), pbs_resources_sp2(7B),
pbs_resources_sunos4(7B), and pbs_resources_unicos8(7B)

pbs_mom

start a pbs batch execution mini-server

Synopsis
pbs_mom [-a alarm] [-A alias] [-C chkdirectory] [-c config] [-d directory] [-h hostname]
 [-L logfile] [-M MOMport] [-R RPPport] [-p|-r] [-P purge] [-x]

Description

The pbs_mom command is located within the TORQUE_HOME directory and starts the operation of a batch
Machine Oriented Mini-server (MOM) on the execution host. To insure that the pbs_mom command is not
runnable by the general user community, the server will only execute if its real and effective uid is zero.

The first function of pbs_mom is to place jobs into execution as directed by the server, establish resource
usage limits, monitor the job's usage, and notify the server when the job completes. If they exist, pbs_mom
will execute a prologue script before executing a job and an epilogue script after executing the job.

The second function of pbs_mom is to respond to resource monitor requests. This was done by a separate
process in previous versions of PBS but has now been combined into one process. It provides information
about the status of running jobs, memory available etc.

The last function of pbs_mom is to respond to task manager requests. This involves communicating with
running tasks over a tcp socket as well as communicating with other MOMs within a job (a.k.a. a
"sisterhood").

pbs_mom will record a diagnostic message in a log file for any error occurrence. The log files are maintained
in the mom_logs directory below the home directory of the server. If the log file cannot be opened, the
diagnostic message is written to the system console.

Options

Flag Name Description

-a alarm Used to specify the alarm timeout in seconds for computing a resource. Every time a
resource request is processed, an alarm is set for the given amount of time. If the
request has not completed before the given time, an alarm signal is generated. The
default is 5 seconds.

-A alias Used to specify this multimom's alias name. The alias name needs to be the same name
used in the mom.hierarchy file. It is only needed when running multiple MOMs on the
same machine. For more information, see TORQUE Multi-MOM.

-C chkdirectory Specifies The path of the directory used to hold checkpoint files. [Currently this is only
valid on Cray systems.] The default directory is TORQUE_HOME/spool/checkpoint, see
the -d option. The directory specified with the -C option must be owned by root and
accessible (rwx) only by root to protect the security of the checkpoint files.

-c config Specify a alternative configuration file, see description below. If this is a relative file
name it will be relative to TORQUE_HOME/mom_priv, see the -d option. If the specified
file cannot be opened, pbs_mom will abort. If the -c option is not supplied, pbs_mom will
attempt to open the default configuration file "config" in TORQUE_HOME/mom_priv. If
this file is not present, pbs_mom will log the fact and continue.

-d directory Specifies the path of the directory which is the home of the server's working files,
TORQUE_HOME. This option is typically used along with -M when debugging MOM. The
default directory is given by $PBS_SERVER_HOME which is typically /usr/spool/PBS.

-h hostname Set MOM's hostname. This can be useful on multi-homed networks.

-L logfile Specify an absolute path name for use as the log file. If not specified, MOM will open a
file named for the current date in the TORQUE_HOME/mom_logs directory, see the -d
option.

-M port Specifies the port number on which the mini-server (MOM) will listen for batch requests.

-p n/a Specifies the impact on jobs which were in execution when the mini-server shut down.
On any restart of MOM, the new mini-server will not be the parent of any running jobs,
MOM has lost control of her offspring (not a new situation for a mother). With the -p
option, MOM will allow the jobs to continue to run and monitor them indirectly via
polling. This flag is redundant in that this is the default behavior when starting the
server. The -p option is mutually exclusive with the -r and -q options.

-P purge Specifies the impact on jobs which were in execution when the mini-server shut down.
With the -P option, it is assumed that either the entire system has been restarted or the
MOM has been down so long that it can no longer guarantee that the pid of any running
process is the same as the recorded job process pid of a recovering job. Unlike the -p
option, no attempt is made to try and preserve or recover running jobs. All jobs are
terminated and removed from the queue.

-q n/a Specifies the impact on jobs which were in execution when the mini-server shut down.
With the -q option, MOM will allow the processes belonging to jobs to continue to run,
but will not attempt to monitor them. The -q option is mutually exclusive with the -p and
-r options.

-R port Specifies the port number on which the mini-server (MOM) will listen for resource monitor
requests, task manager requests and inter-MOM messages. Both a UDP and a TCP port
of this number will be used.

-r n/a
Specifies the impact on jobs which were in execution when the mini-server shut down.
With the -r option, MOM will kill any processes belonging to jobs, mark the jobs as
terminated, and notify the batch server which owns the job. The -r option is mutually
exclusive with the -p and -q options.

Normally the mini-server is started from the system boot file without the -p or the -r
option. The mini-server will make no attempt to signal the former session of any job
which may have been running when the mini-server terminated. It is assumed that on
reboot, all processes have been killed.

If the -r option is used following a reboot, process IDs (pids) may be reused and MOM
may kill a process that is not a batch session.

-x n/a Disables the check for privileged port resource monitor connections. This is used mainly
for testing since the privileged port is the only mechanism used to prevent any ordinary
user from connecting.

Configuration File

The configuration file may be specified on the command line at program start with the -c flag. The use of this
file is to provide several types of run time information to pbs_mom: static resource names and values,
external resources provided by a program to be run on request via a shell escape, and values to pass to
internal set up functions at initialization (and re-initialization).

Each item type is on a single line with the component parts separated by white space. If the line starts with a
hash mark (pound sign, #), the line is considered to be a comment and is skipped.

Static Resources

For static resource names and values, the configuration file contains a list of resource names/values pairs,

one pair per line and separated by white space. An example of static resource names and values could be the
number of tape drives of different types and could be specified by:

tape3480 4
tape3420 2
tapedat 1
tape8mm 1

Shell Commands

If the first character of the value is an exclamation mark (!), the entire rest of the line is saved to be
executed through the services of the system(3) standard library routine.

The shell escape provides a means for the resource monitor to yield arbitrary information to the scheduler.
Parameter substitution is done such that the value of any qualifier sent with the query, as explained below,
replaces a token with a percent sign (%) followed by the name of the qualifier. For example, here is a
configuration file line which gives a resource name of "escape":

escape !echo %xxx %yyy

If a query for "escape" is sent with no qualifiers, the command executed would be echo %xxx %yyy. If one
qualifier is sent, escape[xxx=hi there], the command executed would be echo hi there %yyy. If two
qualifiers are sent, escape[xxx=hi][yyy=there], the command executed would be echo hi there. If a
qualifier is sent with no matching token in the command line, escape[zzz=snafu], an error is reported.

size[fs=<FS>]

Specifies that the available and configured disk space in the <FS> filesystem is to be reported to the
pbs_server and scheduler. To request disk space on a per job basis, specify the file resource as in, qsub -l
nodes=1,file=1000kb. For example, the available and configured disk space in the /localscratch filesystem
will be reported:

size[fs=/localscratch]

Initialization Value

An initialization value directive has a name which starts with a dollar sign ($) and must be known to the MOM
via an internal table. The entries in this table now are:

pbsclient
Causes a host name to be added to the list of hosts which will be allowed to connect to theMOM
as long as they are using a privilaged port for the purposes of resource monitor requests. For
example, here are two configuration file lines which will allow the hosts "fred" and "wilma" to
connect:

$pbsclient fred
$pbsclient wilma

Two host names are always allowed to connect to pbs_mom "localhost" and the name returned
to pbs_mom by the system call gethostname(). These names need not be specified in the
configuration file. The hosts listed as "clients" can issue Resource Manager (RM) requests. Other
MOM nodes and servers do not need to be listed as clients.

restricted
Causes a host name to be added to the list of hosts which will be allowed to connect to the MOM
without needing to use a privilaged port. These names allow for wildcard matching. For example,
here is a configuration file line which will allow queries from any host from the domain
"ibm.com".

$restricted *.ibm.com

The restriction which applies to these connections is that only internal queries may be made. No
resources from a config file will be found. This is to prevent any shell commands from being run
by a non-root process. This parameter is generally not required except for some versions of
OSX.

logevent
Sets the mask that determines which event types are logged by pbs_mom. For example:

$logevent 0x1fff $logevent 255

The first example would set the log event mask to 0x1ff (511) which enables logging of all
events including debug events. The second example would set the mask to 0x0ff (255) which
enables all events except debug events.

cputmult
Sets a factor used to adjust cpu time used by a job. This is provided to allow adjustment of time
charged and limits enforced where the job might run on systems with different cpu performance.
If the MOM's system is faster than the reference system, set cputmult to a decimal value
greater than 1.0. If the MOM's system is slower, set cputmult to a value between 1.0 and 0.0.
For example:

$cputmult 1.5 $cputmult 0.75

usecp
Specifies which directories should be staged with cp instead of rcp/scp. If a shared filesystem is
available on all hosts in a cluster, this directive is used to make these filesystems known to the
MOM. For example, if /home is NFS mounted on all nodes in a cluster:

$usecp *:/home /home

wallmult
Sets a factor to adjust wall time usage by to job to a common reference system. The factor is
used for walltime calculations and limits in the same way that cputmult is used for cpu time.

configversion
Specifies the version of the config file data, a string.

check_poll_time
Specifies the MOM interval in seconds. The MOM checks each job for updated resource usages,
exited processes, over-limit conditions, etc., once per interval. This value should be equal or
lower to pbs_server's job_stat_rate. High values result in stale information reported to
pbs_server. Low values result in increased system usage by the MOM. Default is 45 seconds.

down_on_error
Causes the MOM to report itself as state "down" to pbs_server in the event of a failed health
check. This feature is experimental. See health check below.

ideal_load
Ideal processor load. Represents a low water mark for the load average. A node that is currently
busy will consider itself free after falling below ideal_load.

loglevel
Specifies the verbosity of logging with higher numbers specifying more verbose logging. Values
may range between 0 and 7.

log_file_max_size
If this is set to a value > 0, then pbs_mom will roll the current log file to log-file-name.1 when
its size is greater than or equal to the value of log_file_max_size. This value is interpreted as
kilobytes.

log_file_roll_depth
If this is set to a value >=1 and log_file_max_size is set, then pbs_mom will allow logs to be
rolled up to the specified number of logs. At every roll, the oldest log will be the one to be
deleted to make room for rolling. Pbs_mom will continue rolling the log files to log-file-
name.log_file_roll_depth.

max_load
Maximum processor load. Nodes over this load average are considered busy (see ideal_load
above).

enablemomrestart

Enables automatic restarts of the MOM. If enabled, the MOM will check if its binary has been
updated and restart itself at a safe point when no jobs are running; thus making upgrades
easier. The check is made by comparing the mtime of the pbs_mom executable. Command-line
args, the process name, and the PATH env variable are preserved across restarts. It is
recommended that this not be enabled in the config file, but enabled when desired with momctl
(see RESOURCES for more information.)

node_check_script
Specifies the fully qualified pathname of the health check script to run (see health check for
more information).

node_check_interval
Specifies when to run the MOM health check. The check can be either periodic, event-driven, or
both. The value starts with an integer specifying the number of MOM intervals between
subsequent executions of the specified health check. After the integer is an optional comma-
separated list of event names. Currently supported are "jobstart" and "jobend". This value
defaults to 1 with no events indicating the check is run every MOM interval. (see health check
for more information)

$node_check_interval 0,Disabled
$node_check_interval 0,jobstartOnly
$node_check_interval 10,jobstart,jobend

prologalarm
Specifies maximum duration (in seconds) which the MOM will wait for the job prolog or job job
epilog to complete. This parameter defaults to 300 seconds (5 minutes).

rcpcmd
Specify the full path and argument to be used for remote file copies. This overrides the compile-
time default found in configure. This must contain 2 words: the full path to the command and
the options. The copy command must be able to recursively copy files to the remote host and
accept arguments of the form "user@host:files." For example:

$rcpcmd /usr/bin/rcp -rp
$rcpcmd /usr/bin/scp -rpB

remote_reconfig
Enables the ability to remotely reconfigure pbs_mom with a new config file. Default is disabled.
This parameter accepts various forms of true, yes, and 1.

timeout
Specifies the number of seconds before TCP messages will time out. TCP messages include job
obituaries, and TM requests if RPP is disabled. Default is 60 seconds.

tmpdir
Sets the directory basename for a per-job temporary directory. Before job launch, the MOM will
append the jobid to the tmpdir basename and create the directory. After the job exit, the MOM
will recursively delete it. The env variable TMPDIR will be set for all prolog/epilog scripts, the job
script, and TM tasks.

Directory creation and removal is done as the job owner and group, so the owner must have
write permission to create the directory. If the directory already exists and is owned by the job
owner, it will not be deleted after the job. If the directory already exists and is NOT owned by
the job owner, the job start will be rejected.

status_update_time
Specifies (in seconds) how often theMOM updates its status information to pbs_server. This
value should correlate with the server's scheduling interval and its "node_check_rate" attribute.
High values for "status_update_time" cause pbs_server to report stale information, while low
values increase the load of pbs_server and the network. Default is 45 seconds.

varattr
This is similar to a shell escape above, but includes a TTL. The command will only be run every
TTL seconds. A TTL of -1 will cause the command to be executed only once. A TTL of 0 will
cause the command to be run every time varattr is requested. This parameter may be used
multiple times, but all output will be grouped into a single "varattr" attribute in the request and

status output. If the command has no output, the name will be skipped in the output.

$varattrseta
$varattrsetb

xauthpath
Specifies the path to the xauth binary to enable X11 fowarding.

ignvmem
If set to true, then pbs_mom will ignore vmem/pvmem limit enforcement.

ignwalltime
If set to true, then pbs_mom will ignore walltime limit enforcement.

mom_host
Sets the local hostname as used by pbs_mom.

Resources

Resource Manager queries can be made with momctl -q options to retrieve and set pbs_mom options. Any
configured static resource may be retrieved with a request of the same name. These are resource requests
not otherwise documented in the PBS ERS.

cycle
Forces an immediate MOM cycle.

status_update_time
Retrieve or set the $status_update_time parameter.

check_poll_time
Retrieve or set the $check_poll_time parameter.

configversion
Retrieve the config version.

jobstartblocktime
Retrieve or set the $jobstartblocktime parameter.

enablemomrestart
Retrieve or set the $enablemomrestart parameter.

loglevel
Retrieve or set the $loglevel parameter.

down_on_error
Retrieve or set the EXPERIMENTAL $down_on_error parameter.

diag0 - diag4
Retrieves various diagnostic information.

rcpcmd
Retrieve or set the $rcpcmd parameter.

version
Retrieves the pbs_mom version.

Health Check

The health check script is executed directly by the pbs_mom daemon under the root user id. It must be
accessible from the compute node and may be a script or compiled executable program. It may make any
needed system calls and execute any combination of system utilities but should not execute resource
manager client commands. Also, as of TORQUE 1.0.1, the pbs_mom daemon blocks until the health check is
completed and does not possess a built-in timeout. Consequently, it is advisable to keep the launch script
execution time short and verify that the script will not block even under failure conditions.

If the script detects a failure, it should return the keyword Error to stdout followed by an error message. The
message (up to 256 characters) immediately following the Error string will be assigned to the node attribute
message of the associated node.

If the script detects a failure when run from "jobstart", then the job will be rejected. This should probably
only be used with advanced schedulers like Moab so that the job can be routed to another node.

TORQUE currently ignores Error messages by default, but advanced schedulers like Moab can be configured
to react appropriately.

If the experimental $down_on_error MOM setting is enabled, the MOM will set itself to state down and report
to pbs_server, and pbs_server will report the node as "down". Additionally, the experimental
"down_on_error" server attribute can be enabled which has the same effect but moves the decision to
pbs_server. It is redundant to have MOM's $down_on_error and pbs_servers down_on_error features
enabled. See "down_on_error" in pbs_server_attributes(7B).

Files

$PBS_SERVER_HOME/server_name
Contains the hostname running pbs_server.

$PBS_SERVER_HOME/mom_priv
The default directory for configuration files, typically (/usr/spool/pbs)/mom_priv.

$PBS_SERVER_HOME/mom_logs
Directory for log files recorded by the server.

$PBS_SERVER_HOME/mom_priv/prologue
The administrative script to be run before job execution.

$PBS_SERVER_HOME/mom_priv/epilogue
The administrative script to be run after job execution.

Signal Handling

pbs_mom handles the following signals:

SIGHUP
Causes pbs_mom to re-read its configuration file, close and reopen the log file, and reinitialize
resource structures.

SIGALRM
Results in a log file entry. The signal is used to limit the time taken by certain children
processes, such as the prologue and epilogue.

SIGINT and SIGTERM
Results in pbs_mom exiting without terminating any running jobs. This is the action for the
following signals as well: SIGXCPU, SIGXFSZ, SIGCPULIM, and SIGSHUTDN.

SIGUSR1, SIGUSR2
Causes the MOM to increase and decrease logging levels, respectively.

SIGPIPE, SIGINFO
Are ignored.

SIGBUS, SIGFPE, SIGILL, SIGTRAP, and SIGSYS
Cause a core dump if the PBSCOREDUMP environmental variable is defined.

All other signals have their default behavior installed.

Exit Status

If the pbs_mom command fails to begin operation, the server exits with a value greater than zero.

See Also

pbs_server(8B)
pbs_scheduler_basl(8B)
pbs_scheduler_tcl(8B)
the PBS External Reference Specification
the PBS Administrators Guide.

pbs_server
(PBS Server)

pbs batch system manager

Synopsis
pbs_server [-a active] [-d config_path] [-p port] [-A acctfile]
 [-L logfile] [-M mom_port] [-R momRPP_port] [-S scheduler_port]
 [-h hostname] [-t type] [--ha]

Description

The pbs_server command starts the operation of a batch server on the local host. Typically, this command
will be in a local boot file such as /etc/rc.local . If the batch server is already in execution, pbs_server will exit
with an error. To insure that the pbs_server command is not runnable by the general user community, the
server will only execute if its real and effective uid is zero.

The server will record a diagnostic message in a log file for any error occurrence. The log files are maintained
in the server_logs directory below the home directory of the server. If the log file cannot be opened, the
diagnostic message is written to the system console.

Options

-A acctfile
Specifies an absolute path name of the file to use as the accounting file. If not specified, the file name
will be the current date in the PBS_HOME/server_priv/accounting directory.

-a active
Specifies if scheduling is active or not. This sets the server attribute scheduling. If the option argument
is "true" ("True", "t", "T", or "1"), the server is active and the PBS job scheduler will be called. If the
argument is "false" ("False", "f", "F", or "0), the server is idle, and the scheduler will not be called and
no jobs will be run. If this option is not specified, the server will retain the prior value of the scheduling
attribute.

-d config_path
Specifies the path of the directory which is home to the servers configuration files, PBS_HOME. A host
may have multiple servers. Each server must have a different configuration directory. The default
configuration directory is given by the symbol $PBS_SERVER_HOME which is typically var/spool/torque.

-h hostname
Causes the server to start under a different hostname as obtained from gethostname(2). Useful for
servers with multiple network interfaces to support connections from clients over an interface that has
a hostname assigned that differs from the one that is returned by gethost name(2).

--ha (high availablilty)
Starts server in high availablility mode.

-L logfile
Specifies an absolute path name of the file to use as the log file. If not specified, the file will be the
current date in the PBS_HOME/server_logs directory, see the -d option.

-M mom_port
Specifies the host name and/or port number on which the server should connect the job executor,
MOM. The option argument, mom_conn, is one of the forms: host_name, [:]port_number, or
host_name:port_number. If host_name not specified, the local host is assumed. If port_number is not
specified, the default port is assumed. See the -M option for pbs_mom(8).

-p port
Specifies the port number on which the server will listen for batch requests. If multiple servers are
running on a single host, each must have its own unique port number. This option is for use in testing
with multiple batch systems on a single host.

http://semper/blanks/torque/4.2high-availability.shtml

-R mom_RPPport
Specifies the port number on which the the server should query the up/down status of theMOM. See
the -R option for pbs_mom(8).

-S scheduler_port
Specifies the port number to which the server should connect when contacting the scheduler. The
argument scheduler_conn is of the same syntax as under the -M option.

-t type
Specifies the impact on jobs which were in execution, running, when the server shut down. If the
running job is not rerunnable or restartable from a checkpoint image, the job is aborted. If the job is
rerunnable or restartable, then the actions described below are taken. When the type argument is:

hot
All jobs are requeued except non-rerunnable jobs that were executing. Any rerunnable
job which was executing when the server went down will be run immediately. This returns
the server to the same state as when it went down. After those jobs are restarted, then
normal scheduling takes place for all remaining queued jobs.

If a job cannot be restarted immediately because of a missing resource, such as a node
being down, the server will attempt to restart it periodically for upto 5 minutes. After that
period, the server will revert to a normal state, as if warm started, and will no longer
attempt to restart any remaining jobs which were running prior to the shutdown.

warm
All rerunnable jobs which were running when the server went down are requeued. All
other jobs are maintained. New selections are made for which jobs are placed into
execution. Warm is the default if -t is not specified.

cold
All jobs are deleted. Positive confirmation is required before this direction is accepted.

create
The server will discard any existing configuration files, queues and jobs, and initialize
configuration files to the default values. The server is idled.

Files

TORQUE_HOME/server_priv
default directory for configuration files, typically /usr/spool/pbs/server_priv

TORQUE_HOME/server_logs
directory for log files recorded by the server

Signal Handling

On receipt of the following signals, the server performs the defined action:

SIGHUP
The current server log and accounting log are closed and reopened. This allows for the prior log
to be renamed and a new log started from the time of the signal.

SIGINT
Causes an orderly shutdown of pbs_server.

SIGUSR1, SIGUSR2
Causes server to increase and decrease logging levels, respectively.

SIGTERM
Causes an orderly shutdown of pbs_server.

SIGSHUTDN

On systems (Unicos) where SIGSHUTDN is defined, it also causes an orderly shutdown of the
server.

SIGPIPE
This signal is ignored.

All other signals have their default behavior installed.

Exit Status

If the server command fails to begin batch operation, the server exits with a value greater than zero.

See Also
 qsub (1B), pbs_connect(3B), pbs_mom(8B), pbs_sched_basl(8B),
 pbs_sched_tcl(8B), pbsnodes(8B), qdisable(8B), qenable(8B), qmgr(1B),
 qrun(8B), qstart(8B), qstop(8B), qterm(8B), and the PBS External Reference Specification.

pbs_track
starts a new process and informs pbs_mom to start tracking it

Synopsis
pbs_track -j <JOBID> [-b] <executable> [args]

Description

The pbs_track command tells a pbs_mom daemon to monitor the lifecycle and resource usage of the process
that it launches using exec(). The pbs_mom is told about this new process via the Task Manager API, using
tm_adopt(). The process must also be associated with a job that already exists on the pbs_mom.

By default, pbs_track will send its PID to TORQUE via tm_adopt(). It will then perform an exec(), causing
<executable> to run with the supplied arguments. pbs_track will not return until the launched process has
completed because it becomes the launched process.

This command can be considered related to the pbsdsh command which uses the tm_spawn() API call. The
pbsdsh command asks a pbs_mom to launch and track a new process on behalf of a job. When it is not
desirable or possible for the pbs_mom to spawn processes for a job, pbs_track can be used to allow an
external entity to launch a process and include it as part of a job.

This command improves integration with TORQUE and SGI's MPT MPI implementation.

Options

-j <JOBID>
Job ID the new process should be associated with.

-b
Instead of having pbs_track send its PID to TORQUE, it will fork() first, send the child PID to
TORQUE, and then execute from the forked child. This essentially "backgrounds" pbs_track so
that it will return after the new process is launched.

Operands

The pbs_track command accepts a path to a program/executable (<executable>) and, optionally, one or
more arguments to pass to that program.

Exit Status

Because the pbs_track command becomes a new process (if used without -b), its exit status will match that
of the new process. If the -b option is used, the exit status will be zero if no errors occurred before launching
the new process.

If pbs_track fails, whether due to a bad argument or other error, the exit status will be set to a non-zero
value.

See Also

pbsdsh(1B), tm_spawn(3B)

Appendix B: Server Parameters
TORQUE server parameters are specified using the qmgr command. The set subcommand is used to modify
the server object. For example:

Parameters

acl_hosts

Format: <HOST>[,<HOST>]... or <HOST>[range] or <HOST*> where the asterisk (*) can appear
anywhere in the host name

Default: (only the host running pbs_server may submit jobs)

Description: Specifies a list of hosts from which jobs may be submitted. Hosts in the server nodes file
located at $TORQUE/server_priv/nodes cannot be added to the list using the acl_hosts
parameter. To submit batch or interactive jobs (See Configuring Job Submit Hosts) through
hosts that are specified in the server nodes file, use the submit_hosts parameter.

In version 2.5 and later, the wildcard (*) character can appear anywhere in the host name,
and ranges are supported; these specifications also work for managers and operators.

acl_host_enable

Format: <BOOLEAN>

Default: FALSE

Description: Specifies if the acl_hosts value is enabled

acl_logic_or

Format: <BOOLEAN>

Default: FALSE

Description: Specifies if user and group queue ACL's should be logically AND'd or logically OR'd

acl_roots

Format: <username>@<domain>

Default: ---

Description: Specifies which root users are allowed to submit and run jobs.

> qmgr -c 'set server default_queue=batch'

Qmgr: set queue batch acl_hosts = "hostA,hostB"
Qmgr: set queue batch acl_hosts += "hostE,hostF,hostG"

Qmgr: set server acl_hosts = "galaxy*.tom.org"
Qmgr: set server acl_hosts += "galaxy[0-50].tom.org"
Qmgr: set server managers+=tom@galaxy[0-50].tom.org

http://semper/blanks/torque/commands/qmgr.shtml

allow_node_submit

Format: <BOOLEAN>

Default: FALSE

Description: Specifies if users can submit jobs directly from any trusted compute host directly or from
within batch jobs (See Configuring Job Submit Hosts)

allow_proxy_user

Format: <BOOLEAN>

Default: FALSE

Description: Specifies users can proxy from one user to another. Proxy requests will be either validated by
ruserok() or by the scheduler. (See Job Submission Configuration.)

auto_node_np

Format: <BOOLEAN>

Default: DISABLED

Description: Automatically configures a node's np (number of processors) value based on the ncpus value
from the status update. Requires full manager privilege to set or alter.

checkpoint_defaults

Format: <STRING>

Default: ---

Description: Specifies for a queue the default checkpoint values for a job that does not have checkpointing
specified. The checkpoint_defaults parameter only takes effect on execution queues.

clone_batch_delay

Format: <INTEGER>

Default: 1

Description: Specifies the delay (in seconds) between clone batches.

clone_batch_size

Format: <INTEGER>

Default: 256

Description: Job arrays are created in batches of size X. X jobs are created, and after the
clone_batch_delay, X more are created. This repeats until all are created.

default_queue

Format: <STRING>

set queue batch checkpoint_defaults="enabled, periodic, interval=5"

http://semper/blanks/torque/1.3advconfig.shtml#jobsubmithosts
http://semper/blanks/torque/2.1jobsubmission.shtml

Default: ---

Description: Indicates the queue to assign to a job if no queue is explicitly specified by the submitter

disable_server_id_check

Format: <BOOLEAN>

Default: FALSE

Description: Makes it so the user for the job doesn't have to exist on the server. The user must still exist
on all the compute nodes or the job will fail when it tries to execute.

If you have disable_server_id_check set to TRUE, a user could request a group to
which they do not belong. Setting VALIDATEGROUP to TRUE in the torque.cfg file
prevents such a scenario.

disable_job_server_suffix

Format: <BOOLEAN>

Default: TRUE

Description: If this parameter is set to TRUE, Torque will display both the job ID and the host name. If it is
set to FALSE, only the job ID will be displayed.

 job_force_cancel_time

Format: <INTEGER>

Default: Disabled

Description: If a job has been deleted and is still in the system after x seconds, the job will be purged from
the system. This is mostly useful when a job is running on a large number of nodes and one
node goes down. The job cannot be deleted because the MOM cannot be contacted. The qdel
fails and none of the other nodes can be reused. This parameter can used to remedy such
situations.

 job_log_file_max_size

Format: <INTEGER>

Default: ---

Description: This specifies a soft limit (in kilobytes) for the job log's maximum size. The file size is checked
every five minutes and if the current day file size is greater than or equal to this value, it is
rolled from <filename> to <filename.1> and a new empty log is opened. If the current day
file size exceeds the maximum size a second time, the <filename.1> log file is rolled to
<filename.2>, the current log is rolled to <filename.1>, and a new empty log is opened. Each
new log causes all other logs to roll to an extension that is one greater than its current
number. Any value less than 0 is ignored by pbs_server (meaning the log will not be rolled).

 job_log_file_roll_depth

Format: <INTEGER>

Default: ---

Description: This sets the maximum number of new log files that are kept in a day if

the job_log_file_max_size parameter is set. For example, if the roll depth is set to 3, no file
can roll higher than <filename.3>. If a file is already at the specified depth, such as
<filename.3>, the file is deleted so it can be replaced by the incoming file roll, <filename.2>.

 job_log_keep_days

Format: <INTEGER>

Default: ---

Description: This maintains logs for the number of days designated. If set to 4, any log file older than 4
days old is deleted.

job_nanny

Format: <BOOLEAN>

Default: FALSE

Description: Enables the experimental "job deletion nanny" feature. All job cancels will create a repeating
task that will resend KILL signals if the initial job cancel failed. Further job cancels will be
rejected with the message "job cancel in progress." This is useful for temporary failures with a
job's execution node during a job delete request.

job_stat_rate

Format: <INTEGER>

Default: 45 (set to 30 in TORQUE 1.2.0p5 and earlier)

Description: Specifies the maximum age of MOM level job data which is allowed when servicing a qstat
request. If data is older than this value, the pbs_server daemon will contact the MOMs with
stale data to request an update.For large systems, this value should be increased to 5 minutes
or higher.

job_start_timeout

Format: <INTEGER>

Default: ---

Description: Specifies the pbs_server to pbs_mom TCP socket timeout in seconds that is used when the
pbs_server sends a job start to the pbs_mom. It is useful when the MOM has extra overhead
involved in starting jobs. If not specified, then the tcp_timeout parameter is used.

lock_file

Format: <STRING>

Default: torque/server_priv/server.lock

Description: Specifies the name and location of the lock file used to determine which high availability server
should be active.

If a full path is specified, it is used verbatim by TORQUE. If a relative path is specified,
TORQUE will prefix it with torque/server_priv.

lock_file_update_time

Format: <INTEGER>

Default: 3

Description: Specifies how often (in seconds) the thread will update the lockfile.

lock_file_check_time

Format: <INTEGER>

Default: 9

Description: Specifies how often (in seconds) a high availability server will check
to see if it should become active.

log_events

Format: Bitmap

Default: ---

Description:
By default, all events are logged. However, you can customize things so that only certain
events show up in the log file. These are the bitmaps for the different kinds of logs:

#define PBSEVENT_ERROR 0x0001 /* internal errors */
#define PBSEVENT_SYSTEM 0x0002 /* system (server) events */
#define PBSEVENT_ADMIN 0x0004 /* admin events */
#define PBSEVENT_JOB 0x0008 /* job related events */
#define PBSEVENT_JOB_USAGE 0x0010 /* End of Job accounting */
#define PBSEVENT_SECURITY 0x0020 /* security violation events */
#define PBSEVENT_SCHED 0x0040 /* scheduler events */
#define PBSEVENT_DEBUG 0x0080 /* common debug messages */
#define PBSEVENT_DEBUG2 0x0100 /* less needed debug messages */
#define PBSEVENT_FORCE 0x8000 /* set to force a message */

If you want to log only error, system, and job information, use qmgr to set log_events to 11:

log_file_max_size

Format: <INTEGER>

Default: 0

Description: Specifies a soft limit, in kilobytes, for the server's log file. The filesize is checked every 5
minutes, and if the current day filesize is greater than or equal to this value then it will be
rolled from X to X.1 and a new empty log will be opened. Any value 0 will be ignored by
pbs_server (the log will not be rolled).

log_file_roll_depth

Format: <INTEGER>

Default: 1

Description: This parameter controlls how deep the current day log files will be rolled, if log_file_max_size
is set, before they are deleted.

log_keep_days

set server log_events = 11

Format: <INTEGER>

Default: 0

Description: This specifies how long (in days) a server or MOM log should be kept.

log_level

Format: <INTEGER>

Default: 0

Description: Specifies the pbs_server logging verbosity. Maximum value is 7.

mail_body_fmt

Format: A printf-like format string

Default: PBS Job Id: %i Job Name: %j Exec host: %h %m %d

Description: Override the default format for the body of outgoing mail messages. A number of printf-like
format specifiers and escape sequences can be used:

\n new line

\t tab

\\ backslash

\' single quote

\" double quote

%d details concerning the message

%h PBS host name

%i PBS job identifier

%j PBS job name

%m long reason for message

%r short reason for message

%% a single %

mail_domain

Format: <STRING>

Default: ---

Description: Override the default domain for outgoing mail messages. If set, emails will be addressed to
<user>@<hostdomain>. If unset, the job's Job_Owner attribute will be used. If set to never,
TORQUE will never send emails.

mail_subject_fmt

Format: A printf-like format string

Default: PBS JOB %i

Description: Override the default format for the subject of outgoing mail messages. A number of printf-like
format specifiers and escape sequences can be used:

\n new line

\t tab

\\ backslash

\' single quote

\" double quote

%d details concerning the message

%h PBS host name

%i PBS job identifier

%j PBS job name

%m long reason for message

%r short reason for message

%% a single %

managers

Format: <user>@<host.sub.domain>[,<user>@<host.sub.domain>...]

Default: root@localhost

Description: List of users granted batch administrator privileges. The host, sub-domain, or domain name
may be wildcarded by the use of an asterisk character (*). Requires full manager privilege to
set or alter.

max_job_array_size

Format: <INTEGER>

Default: Unlimited

Description: Sets the maximum number of jobs that can be in a single job array.

max_slot_limit

Format: <INTEGER>

Default: Unlimited

Description: This is the maximum number of jobs that can run concurrently in any job array. Slot limits can
be applied at submission time with qsub, or it can be modifed with qalter.

No array can request a slot limit greater than 10. Any array that does not request a slot limit

qmgr -c 'set server max_slot_limit=10'

http://semper/blanks/torque/commands/qsub.shtml#t
http://semper/blanks/torque/commands/qalter.shtml#array

receives a slot limit of 10. Using the example above, slot requests greater than 10 are rejected
with the message:

Requested slot limit is too large, limit is 10.

max_threads

Format: <INTEGER>

Default: 5

Description: This is the maximum number of threads that should exist in the threadpool at any time.

min_threads

Format: <INTEGER>

Default: 5

Description: This is the minimum number of threads that should exist in the threadpool at any time.

mom_job_sync

Format: <BOOLEAN>

Default: TRUE

Description: Specifies that the pbs_server will synchronize its view of the job queue and resource allocation
with compute nodes as they come online. If a job exists on a compute node in a pre-execution
or corrupt state, it will be automatically cleaned up and purged. (enabled by default in TORQUE
2.2.0 and higher)

np_default

Format: <INTEGER>

Default: ---

Description: Allows the administrator to unify the number of processors (np) on all nodes. The value can be
dynamically changed. A value of 0 tells pbs_server to use the value of np found in the nodes
file. The maximum value is 32767.

operators

Format: <user>@<host.sub.domain>[,<user>@<host.sub.domain>...]

Default: root@localhost

Description: List of users granted batch operator privileges. Requires full manager privilege to set or alter.

node_check_rate

Format: <INTEGER>

Default: 600

Description: Specifies the minimum duration (in seconds) that a node can be unresponsive to server
queries before being marked down by the pbs_server daemon

node_pack

Format: <BOOLEAN>

Default: ---

Description: Controls how multiple processor nodes are allocated to jobs. If this attribute is set to true, jobs
will be assigned to the multiple processor nodes with the fewest free processors. This packs
jobs into the fewest possible nodes leaving multiple processor nodes free for jobs which need
many processors on a node. If set to false, jobs will be scattered across nodes reducing
conflicts over memory between jobs. If unset, the jobs are packed on nodes in the order that
the nodes are declared to the server (in the nodes file). Default value: unset - assigned to
nodes as nodes in order that were declared.

node_ping_rate

Format: <INTEGER>

Default: 300

Description: Specifies the maximum interval (in seconds) between successive pings sent from the
pbs_server daemon to the pbs_mom daemon to determine node/daemon health.

poll_jobs

Format: <BOOLEAN>

Default: TRUE (FALSE in TORQUE 1.2.0p5 and earlier)

Description: If set to TRUE, pbs_server will poll job info from MOMs over time and will not block on
handling requests which require this job information. If set to FALSE, no polling will occur and
if requested job information is stale, pbs_server may block while it attempts to update this
information. For large systems, this value should be set to TRUE.

query_other_jobs

Format: <BOOLEAN>

Default: FALSE

Description: Specifies whether or not non-admin users may view jobs they do not own

record_job_info

Format: <BOOLEAN>

Default: FALSE

Description: This must be set to true in order for job logging to be enabled.

record_job_script

Format: <BOOLEAN>

Default: FALSE

Description: If set to TRUE, this adds the contents of the script executed by a job to the log.

resources_available

Format: <STRING>

Default: ---

Description: Allows overriding of detected resource quantity limits (see queue resources_available).
pbs_server must be restarted for changes to take effect. Also, resources_available is
constrained by the smallest of queue.resources_available and the server.resources_available.

submit_hosts

Format: "<HOSTNAME>[,<HOSTNAME>]..."

Default: ---

Description: Indicates which hosts included in the server nodes file located at $TORQUE/server_priv/nodes
can submit batch or interactive jobs (See Configuring Job Submit Hosts). For more information
on adding hosts that are not included in the first nodes file, see the acl_hosts parameter.

tcp_timeout

Format: <INTEGER>

Default: 8

Description: Specifies the pbs_server to pbs_mom TCP socket timeout in seconds. (see Considerations
for Large Clusters)

thread_idle_seconds

Format: <INTEGER>

Default: -1

Description: This is the number of seconds a thread can be idle in the threadpool before it is deleted. If
threads should not be deleted, set to -1 which is the default. TORQUE will always maintain at
least min_threads number of threads, even if all are idle.

http://semper/blanks/torque/4.1queueconfig.shtml#resources_available
http://semper/blanks/torque/a.flargeclusters.shtml
http://semper/blanks/torque/a.flargeclusters.shtml

Appendix C: Node Manager (MOM) Configuration
C.1 Parameters
C.2 Node Features and Generic Consumable Resource Specification
C.3 Command Line Arguments

Under TORQUE, MOM configuration is accomplished using the mom_priv/config file located in the PBS
directory on each execution server.

C.1 Parameters

tbody>

arch

Format: <STRING>

Description: specifies the architecture of the local machine. This information is used by the scheduler only.

Example: arch ia64

$alias_server_name

Format: <STRING>

Description: (Applicable in version 2.5.0 and later.) Allows the MOM to accept an additional pbs_server host
name as a trusted address.

This feature was added to overcome a problem with UDP and RPP where alias IP addresses are
used on a server. With alias IP addresses a UDP packet can be sent to the alias address but
the UDP reply packet will come back on the primary IP address. RPP matches addresses from
its connection table to incoming packets. If the addresses do not match an entry in the RPP
table, the packet is dropped. This feature allows an additional address for the server to be
added to the table so legitimate packets are not dropped.

Example: $alias_server_name node01

$clienthost

Format: <STRING>

Description: specifies the machine running pbs_server

This parameter is deprecated, use pbsserver

Example: $clienthost node01.teracluster.org

$check_poll_time

Format: <STRING>

Description: amount of time between checking running jobs, polling jobs, and trying to resend obituariess
for jobs that haven't sent successfully. Default is 45 seconds.

Example: $check_poll_time 90

$configversion

Format: <STRING>

Description: specifies the version of the config file data

Example: $configversion 113

$cputmult

Format: <FLOAT>

Description: cpu time multiplier.

If set to 0.0, MOM level cputime enforcement is disabled.

Example: $cputmult 2.2

$ideal_load

Format: <FLOAT>

Description: ideal processor load

Example: $ideal_load 4.0

$igncput

Format: <BOOLEAN>

Description: ignores limit violations pertaining to cpu time. Default is false.

Example: $igncput true

$ignmem

Format: <BOOLEAN>

Description: ignores limit violations pertaining to physical memory. Default is false.

Example: $ignmem true

$ignvmem

Format: <BOOLEAN>

Description: ignores limit violations pertaining to virtual memory. Default is false.

Example: $ignvmem true

$ignwalltime

Format: <BOOLEAN>

Description: ignore walltime (do not enable mom based walltime limit enforcement)

Example: $ignwalltime true

$job_output_file_umask

Format: <STRING>

Description: uses the specified umask when creating job output and error files. Values can be specified in
base 8, 10, or 16; leading 0 implies octal and leading 0x or 0X hexadecimal. A value of
"userdefault" will use the user's default umask. This parameter is in version 2.3.0 and later.

Example: $job_output_file_umask 027

$job_starter

Format: <STRING>

Description: specifies the fully qualified pathname of the job starter. If this parameter is specified, instead
of executing the job command and job arguments directly, the MOM will execute the job
starter, passing the job command and job arguments to it as its arguments. The job starter
can be used to launch jobs within a desired environment.

Example:
$job_starter /var/torque/mom_priv/job_starter.sh
> cat /var/torque/mom_priv/job_starter.sh
#!/bin/bash
export FOOHOME=/home/foo
ulimit -n 314
$*

$log_directory

Format: <STRING>

Description: changes the log directory. Default is TORQUE_HOME/mom_logs/. TORQUE_HOME default is
/var/spool/torque/ but can be changed in the ./configure script. The value is a string and
should be the full path to the desired mom log directory.

Example: $log_directory /opt/torque/mom_logs/

$log_file_suffix

Format: <STRING>

Description: optional suffix to append to log file names. If %h is the suffix, pbs_mom appends the
hostname for where
the log files are stored if it knows it, otherwise it will append the hostname where the mom is
running.

Example: $log_file_suffix %h = 20100223.mybox
$log_file_suffix foo = 20100223.foo

$logevent

Format: <STRING>

Description: specifies a bitmap for event types to log

Example: $logevent 255

$loglevel

Format: <INTEGER>

Description: specifies the verbosity of logging with higher numbers specifying more verbose logging. Values
may range between 0 and 7.

Example: $loglevel 4

$log_file_max_size

Format: <INTEGER>

Description: Soft limit for log file size in kilobytes. Checked every 5 minutes. If the log file is found to be
greater than or equal to log_file_max_size the current log file will be moved from X to X.1 and
a new empty file will be opened.

Example: $log_file_max_size = 100

$log_file_roll_depth

Format: <INTEGER>

Description: specifies how many times a log fill will be rolled before it is deleted.

Example: $log_file_roll_depth = 7

$log_keep_days

Format: <INTEGER>

Description: Specifies how many days to keep log files. pbs_mom deletes log files older than the specified
number of days. If not specified, pbs_mom won't delete log files based on their age.

Example: $log_keep_days 10

$max_load

Format: <FLOAT>

Description: maximum processor load

Example: $max_load 4.0

$memory_pressure_duration

Format: <INTEGER>

Description: (Applicable in version 3.0 and later.) Memory pressure duration sets a limit to the number of
times the value of memory_pressure_threshold can be exceeded before a process is
terminated. This can only be used with $memory_pressure_threshold.

Example: $memory_pressure_duration 5

$memory_pressure_threshold

Format: <INTEGER>

Description: (Applicable in version 3.0 and later.) The memory_pressure of a cpuset provides a simple per-
cpuset running average of the rate that the processes in a cpuset are attempting to free up in-
use memory on the nodes of the cpuset to satisfy additional memory requests. The
memory_pressure_threshold is an integer number used to compare against the reclaim rate
provided by the memory_pressure file. If the threshold is exceeded and
memory_pressure_duration is set, then the process terminates after exceeding the threshold
by the number of times set in memory_pressure_duration. If memory_pressure duration is not
set, then a warning is logged and the process continues. Memory_pressure_threshold is only
valid with memory_pressure enabled in the root cpuset. To enable, log in as the super user

and execute the command echo 1 >> /dev/cpuset/memory_pressure_enabled. See the
cpuset man page for more information concerning memory pressure.

Example: $memory_pressure_threshold 1000

$node_check_script

Format: <STRING>

Description: specifies the fully qualified pathname of the health check script to run. (see Health Check for
more information)

Example: $node_check_script /opt/batch_tools/nodecheck.pl

$node_check_interval

Format: <INTEGER>

Description:
specifies the number of MOM intervals between subsequent executions of the specified health
check. This value default to 1 indicating the check is run every mom interval (see Health Check
for more information).

$node_check_interval has two special strings that can be set:

jobstart - makes the node health script run when a job is started.
jobend - makes the node health script run after each job has completed on a node.

Example: $node_check_interval 5

$nodefile_suffix

Format: <STRING>

Description: Specifies the suffix to append to a host names to denote the data channel network adapter in
a multihomed compute node.

Example: $nodefile_suffix i

With the suffix of 'i' and the control channel adapter with the name node01, the data channel
would have a hostname of node01i.

$nospool_dir_list

Format: <STRING>

Description:
If this is configured, the job's output is spooled in the working directory of the job or the
specified output directory.

Specify the list in full paths, delimited by commas. If the job's working directory (or specified
output directory) is in one of the paths in the list (or a subdirectory of one of the paths in the
list), the job is spooled directly to the output location. $nospool_dir_list * is accepted.

The user that submits the job must have write permission on the folder where the job is
written, and read permission on the folder where the file is spooled.

Alternatively, you can use the $spool_as_final_name parameter to force the job to spool
directly to the final output.

This should generally be used only when the job can run on the same machine as
where the output file goes, or if there is a shared filesystem. If not, this parameter can
slow down the system or fail to create the output file.

Example: $nospool_dir_list /home/mike/jobs/,/var/tmp/spool/

opsys

Format: <STRING>

Description: specifies the operating system of the local machine. This information is used by the scheduler
only.

Example: opsys RHEL3

$pbsclient

Format: <STRING>

Description: specifies machines which the mom daemon will trust to run resource manager commands via
momctl. This may include machines where monitors, schedulers, or admins require the use of
this command.)

Example: $pbsclient node01.teracluster.org

$pbsserver

Format: <STRING>

Description: specifies the machine running pbs_server

This parameter replaces the deprecated parameter clienthost.

Example: $pbsserver node01.teracluster.org

$prologalarm

Format: <INTEGER>

Description: Specifies maximum duration (in seconds) which the mom will wait for the job prologue or job
epilogue to complete. This parameter defaults to 300 seconds (5 minutes).

Example: $prologalarm 60

$rcpcmd

Format: <STRING>

Description: specifies the full path and optional additional command line args to use to perform remote
copies

Example: mom_priv/config:

$remote_reconfig

Format: <STRING>

$rcpcmd /usr/local/bin/scp -i /etc/sshauth.dat

Description: Enables the ability to remotely reconfigure pbs_mom with a new config file. Default is
disabled. This parameter accepts various forms of true, yes, and 1. For more information on
how to reconfigure MOMs, see momctl -r.

Example: $remote_reconfig true

$reduce_prolog_checks

Format: <STRING>

Description: If enabled, TORQUE will only check if the file is a regular file and is executable, instead of the
normal checks listed on the prologue and epilogue page. Default is false.

Example: $reduce_prolog_checks true

$restricted

Format: <STRING>

Description: Specifies hosts which can be trusted to access mom services as non-root. By default, no hosts
are trusted to access mom services as non-root.

Example: $restricted *.teracluster.org

$rpp_throttle

Format: <INTEGER>

Description: This integer is in microseconds and causes a sleep after every RPP packet is sent. It is for
systems that experience job failures because of incomplete data.

Example: $rpp_throttle 100 (will cause a 100 microsecond sleep)

size[fs=<FS>]

Format: N/A

Description: Specifies that the available and configured disk space in the <FS> filesystem is to be reported
to the pbs_server and scheduler.

To request disk space on a per job basis, specify the file resource as in 'qsub -l
nodes=1,file=1000kb'.

Unlike most mom config options, the size parameter is not preceded by a '$'
character.

Example: size[fs=/localscratch]

the available and configured disk space in the /localscratch filesystem will be reported.

$source_login_batch

Format: <STRING>

Description: Specifies whether or not mom will source the /etc/profile, etc. type files for batch jobs.
Parameter accepts various forms of true, false, yes, no, 1 and 0. Default is True. This
parameter is in version 2.3.1 and later.

$source_login_batch False

Example:

mom will bypass the sourcing of /etc/profile, etc. type files.

$source_login_interactive

Format: <STRING>

Description: Specifies whether or not mom will source the /etc/profile, etc. type files for interactive jobs.
Parameter accepts various forms of true, false, yes, no, 1 and 0. Default is True. This
parameter is in version 2.3.1 and later.

Example: $source_login_interactive False

mom will bypass the sourcing of /etc/profile, etc. type files.

$spool_as_final_name

Format: <BOOLEAN>

Description: This will spool the job under the final name that the output and error files will receive, instead
of having an intermediate file and then copying the result to the final file when the job has
completed. This allows users easier access to the file if they want to watch the jobs output as
it runs.

Example:

$status_update_time

Format: <INTEGER>

Description: Specifies the number of seconds between subsequent mom-to-server update reports. Default
is 45 seconds.

Example: status_update_time:

mom will send server update reports every 120 seconds.

$thread_unlink_calls

Format: <BOOLEAN>

Description: Threads calls to unlink when deleting a job. Default is false. If it is set to TRUE, pbs_mom will
use a thread to delete the job's files.

Example: thread_unlink_calls:

$timeout

Format: <INTEGER>

Description: Specifies the number of seconds before mom-to-mom messages will timeout if RPP is disabled.
Default is 60 seconds.

Example: $timeout 120

$spool_as_final_name true

$status_update_time 120

$thread_unlink_calls true

mom-to-mom communication will allow up to 120 seconds before timing out.

$tmpdir

Format: <STRING>

Description: Specifies a directory to create job-specific scratch space (see Creating Per-Job Temporary
Directories

Example: $tmpdir /localscratch

$usecp

Format: <HOST>:<SRCDIR> <DSTDIR>

Description: Specifies which directories should be staged (see TORQUE Data Management)

Example: $usecp *.fte.com:/data /usr/local/data

$use_smt

Format: <BOOLEAN>

Description: Indicates that the user would like to use SMT. If set, each logical core inside of a physical core
will be used as a normal core for cpusets.

If SMT is used, you will need to set the np attribute so that each logical processor is
counted.

Example: $use_smt false

varattr

Format: <INTEGER> <STRING>

Description:
Provides a way to keep track of dynamic attributes on nodes.

<INTEGER> is how many seconds should go by between calls to the script to update the
dynamic values. If set to -1, the script is read only one time.

<STRING> is the script path. This script should check for whatever dynamic attributes are
desired, and then output lines in this format:

name=value

Include any arguments after the script's full path.

These features are visible in the output of pbsnodes -a:

varattr=Matlab=7.1;Octave=1.0.

Example: varattr 25 /usr/local/scripts/nodeProperties.pl arg1 arg2 arg3

$wallmult

Format: <FLOAT>

Description: Sets a factor to adjust walltime usage by multiplying a default job time to a common reference

http://www.clusterresources.com/torquedocs21/users/2.2files.shtml#tmpdir
http://www.clusterresources.com/torquedocs21/users/2.2files.shtml#tmpdir

system. It modifies real walltime on a per-MOM basis (MOM configuration parameters). The
factor is used for walltime calculations and limits in the same way that cputmult is used for
cpu time.

If set to 0.0, MOM level walltime enforcement is disabled.

Example: $wallmult 2.2

C.2 Node Features and Generic Consumable Resource
Specification

Node features (a.k.a. node properties) are opaque labels which can be applied to a node. They are not
consumable and cannot be associated with a value. (use generic resources described below for these
purposes). Node features are configured within the global nodes file on the pbs_server head node and are not
specified on a per node basis. This file can be used to specify an arbitrary number of node features.

Additionally, per node consumable generic resources may be specified using the format '<ATTR> <VAL>' with
no leading dollar ('$') character. When specified, this information is routed to the scheduler and can be used
in scheduling decisions. For example, to indicate that a given host has two tape drives and one node-locked
matlab license available for batch jobs, the following could be specified:

mom_priv/config:

Dynamic Consumable Generic Resources

Dynamic consumable resource information can be routed in by specifying a value preceded by a exclamation
point (i.e., '!') as in the example below. If the resource value is configured in this manner, the specified file
will be periodically executed to load the effective resource value. (See section 2.5.3 of the 'PBS Administrator
Guide' for more information)

mom_priv/config:

C.3 Command-line Arguments

Below is a table of pbs_mom command-line startup flags.

Flag Description

a <integer> Alarm time in seconds.

c <file> Config file path.

C
<directory>

Checkpoint path.

d
<directory>

Home directory.

L <file> Logfile.

$clienthost 241.13.153.7

tape 2
matlab 1

$clienthost 241.13.153.7

tape !/opt/rm/gettapecount.pl
matlab !/opt/tools/getlicensecount.pl

M
<integer>

MOM port to listen on.

p Perform 'poll' based job recovery on restart (jobs persist until associated processes terminate).

P On restart, deletes all jobs that were running on MOM (Available in 2.4.X and later).

q On restart, requeues all jobs that were running on MOM (Available in 2.4.X and later).

r On restart, kills all processes associated with jobs that were running on MOM, and then
requeues the jobs.

R
<integer>

MOM 'RM' port to listen on.

S <integer> pbs_server port to connect to.

v Display version information and exit.

x Disable use of privileged port.

? Show usage information and exit.

*For more details on these command-line options, see the pbs_mom man page.

See Also

Server Commands
Setting up Prolog and Epilog Scripts

Appendix D: Diagnostics and Error Codes

D.1 TORQUE Diagnostics

TORQUE has a diagnostic script to assist you in giving TORQUE Support the files they need to support issues.
It should be run by a user that has access to run all TORQUE commands and access to all TORQUE
directories (this is usually root).

The script (contrib/diag/tdiag.sh) is available in TORQUE 2.3.8, TORQUE 2.4.3, and later. The script grabs
the nodefile, server and MOM logfiles, and captures the output of qmgr -c 'p s'. These are put in a tarfile.

The script also has the following options (this can be shown in the command line by entering ./tdiag.sh -
h):

USAGE: ./torque_diag [-d DATE] [-h] [-o OUTPUT_FILE] [-t TORQUE_HOME]

DATE should be in the format YYYYmmdd. For example, 20091130 would be the date for November 30th, 2009.
If no date is specified, today's date is used. OUTPUT_FILE is the optional name of the output file. The default
output file is torque_diag<today's_date>.tar.gz. TORQUE_HOME should be the path to your TORQUE
directory. If no directory is specified, /var/spool/torque is the default.

D.2 TORQUE Error Codes

Error Code Name Number Description

PBSE_NONE 15000 No error

PBSE_UNKJOBID 15001 Unknown job identifier

PBSE_NOATTR 15002 Undefined attribute

PBSE_ATTRRO 15003 Attempt to set READ ONLY attribute

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown batch request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 No permission

PBSE_BADHOST 15008 Access from host not allowed

PBSE_JOBEXIST 15009 Job already exists

PBSE_SYSTEM 15010 System error occurred

PBSE_INTERNAL 15011 Internal server error occurred

PBSE_REGROUTE 15012 Parent job of dependent in rte queue

PBSE_UNKSIG 15013 Unknown signal name

PBSE_BADATVAL 15014 Bad attribute value

PBSE_MODATRRUN 15015 Cannot modify attribute in run state

PBSE_BADSTATE 15016 Request invalid for job state

PBSE_UNKQUE 15018 Unknown queue name

PBSE_BADCRED 15019 Invalid credential in request

PBSE_EXPIRED 15020 Expired credential in request

PBSE_QUNOENB 15021 Queue not enabled

PBSE_QACESS 15022 No access permission for queue

PBSE_BADUSER 15023 Bad user - no password entry

PBSE_HOPCOUNT 15024 Max hop count exceeded

PBSE_QUEEXIST 15025 Queue already exists

PBSE_ATTRTYPE 15026 Incompatible queue attribute type

PBSE_QUEBUSY 15027 Queue busy (not empty)

PBSE_QUENBIG 15028 Queue name too long

PBSE_NOSUP 15029 Feature/function not supported

PBSE_QUENOEN 15030 Cannot enable queue, needs add def

PBSE_PROTOCOL 15031 Protocol (ASN.1) error

PBSE_BADATLST 15032 Bad attribute list structure

PBSE_NOCONNECTS 15033 No free connections

PBSE_NOSERVER 15034 No server to connect to

PBSE_UNKRESC 15035 Unknown resource

PBSE_EXCQRESC 15036 Job exceeds queue resource limits

PBSE_QUENODFLT 15037 No default queue defined

PBSE_NORERUN 15038 Job not rerunnable

PBSE_ROUTEREJ 15039 Route rejected by all destinations

PBSE_ROUTEEXPD 15040 Time in route queue expired

PBSE_MOMREJECT 15041 Request to the MOM failed

PBSE_BADSCRIPT 15042 (qsub) cannot access script file

PBSE_STAGEIN 15043 Stage In of files failed

PBSE_RESCUNAV 15044 Resources temporarily unavailable

PBSE_BADGRP 15045 Bad group specified

PBSE_MAXQUED 15046 Max number of jobs in queue

PBSE_CKPBSY 15047 Checkpoint busy, may be retries

PBSE_EXLIMIT 15048 Limit exceeds allowable

PBSE_BADACCT 15049 Bad account attribute value

PBSE_ALRDYEXIT 15050 Job already in exit state

PBSE_NOCOPYFILE 15051 Job files not copied

PBSE_CLEANEDOUT 15052 Unknown job id after clean init

PBSE_NOSYNCMSTR 15053 No master in Sync Set

PBSE_BADDEPEND 15054 Invalid dependency

PBSE_DUPLIST 15055 Duplicate entry in List

PBSE_DISPROTO 15056 Bad DIS based request protocol

PBSE_EXECTHERE 15057 Cannot execute there

PBSE_SISREJECT 15058 Sister rejected

PBSE_SISCOMM 15059 Sister could not communicate

PBSE_SVRDOWN 15060 Requirement rejected -server shutting down

PBSE_CKPSHORT 15061 Not all tasks could checkpoint

PBSE_UNKNODE 15062 Named node is not in the list

PBSE_UNKNODEATR 15063 Node-attribute not recognized

PBSE_NONODES 15064 Server has no node list

PBSE_NODENBIG 15065 Node name is too big

PBSE_NODEEXIST 15066 Node name already exists

PBSE_BADNDATVAL 15067 Bad node-attribute value

PBSE_MUTUALEX 15068 State values are mutually exclusive

PBSE_GMODERR 15069 Error(s) during global modification of nodes

PBSE_NORELYMOM 15070 Could not contact the MOM

PBSE_NOTSNODE 15071 No time-shared nodes

Appendix E: Considerations Before Upgrading
TORQUE is flexible in regards to how it can be upgraded. In most cases, a TORQUE shutdown followed by a
configure, make, make install procedure as documented in the TORQUE Administrator's Guide is all that is
required. This process will preserve existing configuration and in most cases, existing workload.

A few considerations are included below:

If upgrading from OpenPBS, PBSPro, or TORQUE 1.0.3 or earlier, queued jobs whether active or idle
will be lost. In such situations, job queues should be completely drained of all jobs.
If not using the pbs_mom -r or -p flag, running jobs may be lost. In such cases, running jobs should
be allowed to completed or should be requeued before upgrading TORQUE.
pbs_mom and pbs_server daemons of differing versions may be run together. However, not all
combinations have been tested and unexpected failures may occur.

Upgrade Steps

1. Build new release (do not install)
2. Stop all TORQUE daemons - See qterm and momctl -s
3. Install new TORQUE - use make install
4. Start all TORQUE daemons

E.1 Rolling Upgrade

the enablemomrestart option causes a MOM to check if its binary has been updated and will restart itself at
a safe point when no jobs are running, making upgrades easier. This can be enabled in the MOM config file,
but it is recommended to enable it with momctl.

1. Prepare the new version MOM package
2. Install the MOM package on the compute nodes
3. Run momctl -q enablemomrestart=1 -h :ALL

Appendix F: Large Cluster Considerations

F.1 Communication Overview

TORQUE has enhanced much of the communication found in the original OpenPBS project. This has resulted
in a number of key advantages:

Support for larger clusters
Support for more jobs
Support for larger jobs
Support for larger messages

In most cases, enhancements made apply to all systems and no tuning is required. However, some changes
have been made configurable to allow site specific modification. The configurable communication parameters
are:

node_check_rate
node_ping_rate
tcp_timeout

F.2 Scalability Guidelines

In very large clusters (in excess of 1,000 nodes), it may be advisable to additionally tune a number of
communication layer timeouts. By default, PBS MOM daemons will timeout on inter-MOM messages after 60
seconds. In TORQUE 1.1.0p5 and higher, this can be adjusted by setting the timeout parameter in the
mom_priv/config file. If 15059 errors (cannot receive message from sisters) are seen in the MOM logs, it
may be necessary to increase this value.

Client-to-PBS server and MOM-to-PBS server communication timeouts are specified via the tcp_timeout
server option using the qmgr command.

On some systems, ulimit values may prevent large jobs from running. In particular, the open file
descriptor limit (i.e., ulimit -n) should be set to at least the maximum job size in procs + 20.
Further, there may be value in setting the fs.file-max in sysctl.conf to a high value, such as:

/etc/sysctl.conf:

F.3 End User Command Caching

F.3.1 qstat

In a large system, users may tend to place excessive load on the system by manual or automated use of
resource manager end user client commands. A simple way of reducing this load is through the use of client
command wrappers which cache data. The example script below will cache the output of the command
'qstat -f' for 60 seconds and report this info to end users.

fs.file-max = 65536

#!/bin/sh

USAGE: qstat $@

CMDPATH=/usr/local/bin/qstat
CACHETIME=60
TMPFILE=/tmp/qstat.f.tmp

if ["$1" != "-f"] ; then
 #echo "direct check (arg1=$1) "

The above script can easily be modified to cache any command and any combination of arguments by
changing one or more of the following attributes:

script name
value of $CMDPATH
value of $CACHETIME
value of $TMPFILE

For example, to cache the command pbsnodes -a, make the following changes:

move original pbsnodes command to pbsnodes.orig
save the script as 'pbsnodes'
change $CMDPATH to pbsnodes.orig
change $TMPFILE to /tmp/pbsnodes.a.tmp

F.5 Other Considerations

F.5.1 job_stat_rate

In a large system, there may be many users, many jobs, and many requests for information. To speed up
response time for users and for programs using the API the job_stat_rate can be used to tweak when the
pbs_server daemon will query MOMs for job information. By increasing this number, a system will not be
constantly querying job information and causing other commands to block.

F.5.2 poll_jobs

The poll_jobs parameter allows a site to configure how the pbs_server daemon will poll for job information.
When set to TRUE, the pbs_server will poll job information in the background and not block on user
requests. When set to FALSE, the pbs_server may block on user requests when it has stale job information
data. Large clusters should set this parameter to TRUE.

F.5.3 Internal Settings

On large, slow, and/or heavily loaded systems, it may be desirable to increase the pbs_tcp_timeout setting
used by the pbs_mom daemon in MOM-to-MOM communication. This setting defaults to 20 seconds and
requires rebuilding code to adjust. For client-server based communication, this attribute can be set using the
qmgr command. For MOM-to-MOM communication, a source code modification is required. To make this
change, edit the $TORQUEBUILDDIR/src/lib/Libifl/tcp_dis.c file and set pbs_tcp_timeout to the desired
maximum number of seconds allowed for a MOM-to-MOM request to be serviced.

A system may be heavily loaded if it reports multiple 'End of File from addr' or 'Premature end of
message' failures in the pbs_mom or pbs_server logs.

 $CMDPATH $1 $2 $3 $4
 exit $?
fi

if [-n "$2"] ; then
 #echo "direct check (arg2=$2)"
 $CMDPATH $1 $2 $3 $4
 exit $?
fi

if [-f $TMPFILE] ; then
 TMPFILEMTIME=`stat -c %Z $TMPFILE`
else
 TMPFILEMTIME=0
fi

NOW=`date +%s`

AGE=$(($NOW - $TMPFILEMTIME))

F.5.4 Scheduler Settings

If using Moab, there are a number of parameters which can be set on the schedululer which may improve
TORQUE performance. In an environment containing a large number of short-running jobs, the
JOBAGGREGATIONTIME parameter (see Appendix F of the Moab Workload Manager Administrator's Guide)
can be set to reduce the number of workload and resource queries performed by the scheduler when an
event based interface is enabled. If the pbs_server daemon is heavily loaded and PBS API timeout errors
(ie. 'Premature end of message') are reported within the scheduler, the TIMEOUT attribute of the RMCFG
parameter (see Appendix F of the Moab Workload Manager Administrator's Guide) may be set with a value of
between 30 and 90 seconds.

F.5.5 File System

TORQUE can be configured to disable file system blocking until data is physically written to the disk by using
the --disable-filesync argument with configure. While having filesync enabled is more reliable, it may
lead to server delays for sites with either a larger number of nodes, or a large number of jobs. Filesync is
enabled by default.

F.5.6 Network ARP cache

For networks with more than 512 nodes it is mandatory to increase the kernel’s internal ARP cache size. For
a network of ~1000 nodes, we use these values in /etc/sysctl.conf on all nodes and servers:

Use sysctl -p to reload this file.

The ARP cache size on other Unixes can presumably be modified in a similar way.

An alternative approach is to have a static /etc/ethers file with all hostnames and MAC addresses and load
this by arp -f /etc/ethers. However, maintaining this approach is quite cumbersome when nodes get new
MAC addresses (due to repairs, for example).

/etc/sysctl.conf
Don't allow the arp table to become bigger than this
net.ipv4.neigh.default.gc_thresh3 = 4096
Tell the gc when to become aggressive with arp table cleaning.
Adjust this based on size of the LAN.
net.ipv4.neigh.default.gc_thresh2 = 2048
Adjust where the gc will leave arp table alone
net.ipv4.neigh.default.gc_thresh1 = 1024
Adjust to arp table gc to clean-up more often
net.ipv4.neigh.default.gc_interval = 3600
ARP cache entry timeout
net.ipv4.neigh.default.gc_stale_time = 3600

http://www.adaptivecomputing.com/resources/docs/mwm
http://semper/blanks/mwm/a.fparameters.php#j
http://semper/blanks/mwm/a.fparameters.php#r

Appendix G: Prologue & Epilogue Scripts
TORQUE provides administrators the ability to run scripts before and/or after each job executes. With such a
script, a site can prepare systems, perform node health checks, prepend and append text to output and error
log files, cleanup systems, and so forth.

The following table shows which MOM runs which script. All scripts must be in the TORQUE_HOME/mom_priv/
directory and be available on every compute node. Mother Superior, as referenced in the following table, is
the pbs_mom on the first node allocated, and the term Sisters refers to pbs_moms, although note that a
Mother Superior is also a sister node.

Script Execution Location Executed
as

Execution Directory File
Permissions

prologue Mother Superior root TORQUE_HOME/mom_priv/ readable and
executable by
root and NOT
writable by
anyone
besides root
(e.g., -r-x--
----)

epilogue

prologue.<name>

epilogue.<name>

prologue.user user readable and
executable by
root and other
(e.g., -r-x--
-r-x)

epilogue.user

prologue.parallel Sister user readable and
executable by
user and NOT
writable by
anyone
besides user
(e.g., -r-x--
-r-x)

epilogue.parallel* Sister

epilogue.precancel Mother Superior

This script is run after a job
cancel request is received from
pbs_server and before a kill
signal is sent to the job process.

* available in Version 2.1

Script Order of Execution

When jobs start, the order of script execution is prologue followed by prologue.user. On job exit, the order of
execution is epilogue.user followed by epilogue unless a job is canceled. In that case, epilogue.precancel is
executed first. Epilogue.parallel is executed only on the Sister nodes when the job is completed.

The epilogue and prologue scripts are controlled by the system administrator. However, beginning in
TORQUE version 2.4 a user epilogue and prologue script can be used on a per job basis. See G.2 Per
Job Prologue and Epilogue Scripts for more information.

Root squashing is now supported for epilogue and prologue scripts.

G.1 Script Environment

The prolog and epilog scripts can be very simple. On most systems, the script must declare the execution

shell using the #!<SHELL> syntax (i.e., '#!/bin/sh'). In addition, the script may want to process context
sensitive arguments passed by TORQUE to the script.

Prolog Environment

The following arguments are passed to the prologue, prologue.user, and prologue.parallel scripts:

Argument Description

argv[1] job id

argv[2] job execution user name

argv[3] job execution group name

argv[4] job name (TORQUE 1.2.0p4 and higher only)

argv[5] list of requested resource limits (TORQUE 1.2.0p4 and higher only)

argv[6] job execution queue (TORQUE 1.2.0p4 and higher only)

argv[7] job account (TORQUE 1.2.0p4 and higher only)

Epilog Environment

TORQUE supplies the following arguments to the epilogue, epilogue.user, epilogue.precancel, and
epilogue.parallel scripts:

Argument Description

argv[1] job id

argv[2] job execution user name

argv[3] job execution group name

argv[4] job name

argv[5] session id

argv[6] list of requested resource limits

argv[7] list of resources used by job

argv[8] job execution queue

argv[9] job account

argv[10] job exit code

The epilogue.precancel script is run after a job cancel request is received by the MOM and before any
signals are sent to job processes. If this script exists, it is run whether the canceled job was active or idle.

For all scripts, the environment passed to the script is empty. Also, standard input for both scripts is
connected to a system dependent file. Currently, for all systems this is /dev/null. Except for epilogue
scripts of an interactive job, prologue.parallel and epilogue.parallel, the standard output and error are
connected to input and error files associated with the job. For an interactive job, since the pseudo terminal
connection is released after the job completes, the standard input and error point to /dev/null. For
prologue.parallel and epilogue.parallel, the user will need to redirect stdout and stderr manually.

G.2 Per Job Prologue and Epilogue Scripts

TORQUE supports per job prologue and epilogue scripts when using the qsub -l option. The syntax is: qsub -
l prologue=<prologue_script_path> epilogue=<epilogue_script_path> <script>. The path can be
either relative (from the directory where the job is submitted) or absolute. The files must be owned by the
user with at least execute and write privileges, and the permissions must not be writeable by group or other.

TORQUE_HOME/mom_priv/:

Example:

This job submission executes the prologue script first. When the prologue script is complete, job14.pl runs.
When job14.pl completes, the epilogue script is executed.

G.3 Prologue and Epilogue Scripts Time Out

TORQUE takes preventative measures against prologue and epilogue scripts by placing an alarm around the
scripts execution. By default, TORQUE sets the alarm to go off after 5 minutes of execution. If the script
exceeds this time, it will be terminated and the node will be marked down. This timeout can be adjusted by
setting the prologalarm parameter in the mom_priv/config file.

While TORQUE is executing the epilogue, epilogue.user, or epilogue.precancel scripts, the job will
be in the E (exiting) state.

G.4 Prologue Error Processing

If the prologue script executes successfully, it should exit with a zero status. Otherwise, the script should
return the appropriate error code as defined in the table below. The pbs_mom will report the script's exit
status to pbs_server which will in turn take the associated action. The following table describes each exit
code for the prologue scripts and the action taken.

Error Description Action

-4 The script timed out Job will be requeued

-3 The wait(2) call returned an error Job will be requeued

-2 Input file could not be opened Job will be requeued

-1 Permission error
(script is not owned by root, or is writable by others)

Job will be requeued

0 Successful completion Job will run

1 Abort exit code Job will be aborted

>1 other Job will be requeued

Example 1

Following are example prologue and epilogue scripts that write the arguments passed to them in the job's
standard out file:

prologue

Script #!/bin/sh

echo "Prologue Args:"
echo "Job ID: $1"
echo "User ID: $2"
echo "Group ID: $3"
echo ""

-r-x------ 1 usertom usertom 24 2009-11-09 16:11 prologue_script.sh
-r-x------ 1 usertom usertom 24 2009-11-09 16:11 epilogue_script.sh

$ qsub -l prologue=/home/usertom/dev/prologue_script.sh
epilogue=/home/usertom/dev/epilogue_script.sh job14.pl

exit 0

stdout

Prologue Args:
Job ID: 13724.node01
User ID: user1
Group ID: user1

epilogue

Script #!/bin/sh

echo "Epilogue Args:"
echo "Job ID: $1"
echo "User ID: $2"
echo "Group ID: $3"
echo "Job Name: $4"
echo "Session ID: $5"
echo "Resource List: $6"
echo "Resources Used: $7"
echo "Queue Name: $8"
echo "Account String: $9"
echo ""

exit 0

stdout

Epilogue Args:
Job ID: 13724.node01
User ID: user1
Group ID: user1
Job Name: script.sh
Session ID: 28244
Resource List: neednodes=node01,nodes=1,walltime=00:01:00
Resources Used: cput=00:00:00,mem=0kb,vmem=0kb,walltime=00:00:07
Queue Name: batch
Account String:

Example 2

The Ohio Supercomputer Center contributed the following scripts:
"prologue creates a unique temporary directory on each node assigned to a job before the job begins to run,
and epilogue deletes that directory after the job completes.

Having a separate temporary directory on each node is probably not as good as having a good, high
performance parallel filesystem.

prologue
#!/bin/sh
Create TMPDIR on all the nodes
Copyright 1999, 2000, 2001 Ohio Supercomputer Center
prologue gets 3 arguments:
1 -- jobid
2 -- userid
3 -- grpid
#
jobid=$1

Prologue, prologue.user and prologue.parallel scripts can have dramatic effects on job scheduling if
written improperly.

user=$2
group=$3
nodefile=/var/spool/pbs/aux/$jobid
if [-r $nodefile] ; then
 nodes=$(sort $nodefile | uniq)
else
 nodes=localhost
fi
tmp=/tmp/pbstmp.$jobid
for i in $nodes ; do
 ssh $i mkdir -m 700 $tmp \&\& chown $user.$group $tmp
done
exit 0

epilogue
#!/bin/sh
Clear out TMPDIR
Copyright 1999, 2000, 2001 Ohio Supercomputer Center
epilogue gets 9 arguments:
1 -- jobid
2 -- userid
3 -- grpid
4 -- job name
5 -- sessionid
6 -- resource limits
7 -- resources used
8 -- queue
9 -- account
#
jobid=$1
nodefile=/var/spool/pbs/aux/$jobid
if [-r $nodefile] ; then
 nodes=$(sort $nodefile | uniq)
else
 nodes=localhost
fi
tmp=/tmp/pbstmp.$jobid
for i in $nodes ; do
 ssh $i rm -rf $tmp
done
exit 0

Appendix H: Running Multiple TORQUE Servers
and MOMs on the Same Node
TORQUE can be configured to allow multiple servers and MOMs to run on the same node. This example will
show how to configure, compile and install two different TORQUE servers and moms on the same node.

H.1 Configuring the First TORQUE

Then make and make install will place the first TORQUE into "/usr/spool/PBS1" with the executables in their
corresponding directories.

H.2 Configuring the Second TORQUE

Then make and make install will place the second TORQUE into "/usr/spool/PBS2" with the executables in
their corresponding directories.

H.3 Bringing the First TORQUE server online

Each command (including pbs_server and pbs_mom takes parameters indicating which servers and ports to
connect to or listen on (when appropriate). Each of these is documented in their corresponding man pages
(configure with --enable-docs).

In this example the first TORQUE server will accept batch requests on port 35000, communicate with the
MOMs on port 35001, and communicate via RPP on port 35002. The first TORQUE MOM will try to connect to
the server on port 35000, it will listen for requests from the server on port 35001 and will communicate via
RPP on port 35002 (Each of these command arguments is discussed in further details on the corresponding
man page. In particular, -t create is only used the first time a server is run.).

Afterwards, when using a client command to make a batch request it is necessary to specify the servername
and serverport (35000):

Submitting jobs can be accomplished using the -q option ([queue][@host[:port]]):

H.4 Bringing the Second TORQUE Server Online

In this example the second TORQUE server will accept batch requests on port 36000, communicate with the
MOMS on port 36002, and communicate via RPP on port 36002. The second TORQUE MOM will try to connect
to the server on port 36000, it will listen for requests from the server on port 36001 and will communicate
via RPP on port 36002.

Afterward, when using a client command to make a batch request it is necessary to specify the servername

./configure --with-server-home=/usr/spool/PBS1 --
bindir=/usr/spool/PBS1/bin --sbindir=/usr/spool/PBS1/sbin

./configure --with-server-home=/usr/spool/PBS2 --
bindir=/usr/spool/PBS2/bin --sbindir=/usr/spool/PBS2/sbin

> pbs_server -p 35000 -M 35001 -R 35002 -t create
> pbs_mom -S 35000 -M 35001 -R 35002

> pbsnodes -a -s node01:35000

> qsub -q @node01:35000 /tmp/script.pbs

> pbs_server -p 36000 -M 36001 -R 36002 -t create
> pbs_mom -S 36000 -M 36001 -R 36002

and serverport (36002):

> pbsnodes -a -s node01:36000
> qsub -q @node01:36000 /tmp/script.pbs

Appendix I: Security Overview
I.1 SUID Usage
I.2 /etc/hosts Usage

I.1 SUID Usage

TORQUE uses setuid (SUID) permissions in a single location so as to validate the identity of a user request.
 This is accomplished using the pbs_iff tool which is SUID root and performs the following actions:

parse specified server hostname and port
connect to specified server port using reserved/privileged port
determine UID of executing user
report UID and socket port info of caller to server
verify response from server

I.2 /etc/hosts Usage

In systems where security is a major concern, please be aware that some security experts consider adding
the compute nodes to the /etc/hosts file to be more secure than using ACL lists.

Appendix J: Job Submission Filter (aka 'qsub
Wrapper')
When a submit filter exists, TORQUE will send the command file (or contents of STDIN if piped to qsub) to
that script/executable and allow it to evaluate the submitted request based on specific site policies. The
resulting file is then handed back to qsub and processing continues. Submit filters can check user jobs for
correctness based on site policies. They can also modify user jobs as they are submitted. Some examples of
what a submit filter might evaluate and check for are:

Memory Request - Verifiy that the job requests memory and rejects if it does not.
Job event notifications - Check if the job does one of the following and rejects it if it:

explicitly requests no notification.
requests notifications but does not provide an email address.

Walltime specified - Verify that the walltime is specified.
Global Walltime Limit - Verify that the walltime is below the global max walltime.
Test Walltime Limit - If the job is a test job, this check rejects the job it if it requests a walltime longer
than the testing maximum.

The script below reads the original submission request from STDIN and shows how you could insert
parameters into a job submit request:

Command line arguments passed to qsub are passed as arguments to the submit filter (filter won’t see them
in STDIN) in the same order and may be used as needed. It should be noted that as of TORQUE 2.2.0
extended attributes are not passed to the filter. Exit status of -1 will cause qsub to reject the submission with
a message stating that it failed due to administrative policies.

The submit filter must be executable, must be available on each of the nodes where users may submit jobs,
and by default, must be located at ${libexecdir}/qsub_filter (for version 2.1 and older:
/usr/local/sbin/torque_submitfilter). At run time, if the file does not exist at this new preferred path
then qsub will fall back to the old hard-coded path. The submit filter location can be customized by setting
the SUBMITFILTER parameter inside the torque.cfg file, as in the following example:

torque.cfg:

*Initial development courtesy of Oak Ridge National Laboratories

#!/bin/sh

add default memory constraints to all requests
that did not specify it in user's script or on command line

echo "#PBS -l mem=16MB"

while read i
 do
 echo $i
 done

SUBMITFILTER /opt/torque/submit.pl
...

Appendix K: torque.cfg Configuration File
The torque.cfg file should be placed in the TORQUE home directory (i.e., /var/spool/torque). Below is a
list of torque.cfg parameters:

CLIENTRETRY

Format:
<INT>

Default:
0

Description:
Seconds between retry attempts to talk to pbs_server

DEFAULTCKPT

Format:
<STRING>

Default:
None

Description:
Default value for job's checkpoint attribute

FAULT_TOLERANT_BY_DEFAULT

Format:
<BOOLEAN>

Default:
FALSE

Description:
Sets all jobs to fault tolerant by default. See qsub -f for more information on fault tolerance.

QSUBHOST

Format:
<HOSTNAME>

Default:
None

Description:
Specify the hostname where pbs_mom will find qsub for interactive jobs.

QSUBSENDUID

Format:
N/A

Default:
None

Description:
Integer for jobs's PBS_O_UID variable. Specifying the parameter name anywhere in the config
file enables the feature. Removing the parameter name disables the feature.

QSUBSLEEP

Format:
<INT>

Default:
0

Description:
Specifies time to sleep when running qsub command, used to prevent users from
overwhelming the scheduler.

RERUNNABLEBYDEFAULT

Format: <BOOLEAN>

Default: TRUE

Description: Specifies if a job is rerunnable by default. Setting this to false causes the rerunnable attribute
value to be false unless the users specifies otherwise with the qsub -r option.. New in TORQUE
2.4.

SERVERHOST

Format:
<STRING>

Default:
localhost

Description:
If set, the server will open socket connections and communicate with client commands and
other services using the specified network interface. (useful with multi-homed hosts, i.e.,
nodes with multiple network adapters)

SUBMITFILTER

Format:
<STRING>

Default:
${libexecdir}/qsub_filter (for version 2.1 and older: /usr/local/sbin/torque_submitfilter)

Description:
Specifies the location of the submit filter used to pre-process job submission.

VALIDATEGROUP

Format:
<BOOLEAN>

Default:
False

Description:
Validate submit user's group on qsub commands. For TORQUE builds released after 2/8/2011,
VALIDATEGROUP also checks any groups requested in group_list at the submit host. Set
VALIDATEGROUP to TRUE if you set disable_server_id_check to TRUE.

VALIDATEPATH

Format:
<BOOLEAN>

Default:
TRUE

Description:
Validate local existence of '-d' working directory

Example:

torque.cfg:

QSUBSLEEP 2
SERVERHOST orion15

Appendix L: TORQUE Quick Start Guide

L.1 Initial Installation

Download the TORQUE distribution file from http://clusterresources.com/downloads/torque
Extract and build the distribution on the machine that will act as the "TORQUE server" - the machine
that will monitor and control all compute nodes by running the pbs_server daemon. See the example
below:

OSX 10.4 users need to change the #define __TDARWIN in src/include/pbs_config.h to
#define __TDARWIN_8.

After installation, verify you have PATH environment variables configured for /usr/local/bin/
and /usr/local/sbin/. Client commands are installed to /usr/local/bin and server binaries
are installed to /usr/local/sbin.<

In this document TORQUE_HOME corresponds to where TORQUE stores its configuration files.
The default is /var/spool/torque.

L.2 Initialize/Configure TORQUE on the Server (pbs_server)

Once installation on the TORQUE server is complete, configure the pbs_server daemon by executing
the command torque.setup <USER> found packaged with the distribution source code, where
<USER> is a username that will act as the TORQUE admin. This script will set up a basic batch queue
to get you started. If you experience problems, make sure that the most recent TORQUE executables
are being executed, or that the executables are in your current PATH.
If doing this step manually, be certain to run the command 'pbs_server -t create' to create the new
batch database. If this step is not taken, the pbs_server daemon will be unable to start.
Proper server configuration can be verified by following the steps listed in Section 1.4 Testing

L.3 Install TORQUE on the Compute Nodes

To configure a compute node do the following on each machine (see page 19, Section 3.2.1 of PBS
Administrator's Manual for full details):

Create the self-extracting, distributable packages with make packages (See the INSTALL file for
additional options and features of the distributable packages) and use the parallel shell command from
your cluster management suite to copy and execute the package on all nodes (ie: xCAT users might do
prcp torque-package-linux-i686.sh main:/tmp/; psh main /tmp/torque-package-linux-
i686.sh --install. Optionally, distribute and install the clients package.

L.4 Configure TORQUE on the Compute Nodes

For each compute host, the MOM daemon must be configured to trust the pbs_server daemon. In
TORQUE 2.0.0p4 and earlier, this is done by creating the TORQUE_HOME/mom_priv/config file and
setting the $pbsserver parameter. In TORQUE 2.0.0p5 and later, this can also be done by creating the
TORQUE_HOME/server_name file and placing the server hostname inside.
Additional config parameters may be added to TORQUE_HOME/mom_priv/config (See the MOM Config
page for details.)

L.5 Configure Data Management on the Compute Nodes

> tar -xzvf torque.tar.gz
> cd torque
> ./configure
> make
> make install

http://clusterresources.com/downloads/torque

Data management allows jobs' data to be staged in/out or to and from the server and compute nodes.

For shared filesystems (i.e., NFS, DFS, AFS, etc.) use the $usecp parameter in the mom_priv/config
files to specify how to map a user's home directory.
(Example: $usecp gridmaster.tmx.com:/home /home)
For local, non-shared filesystems, rcp or scp must be configured to allow direct copy without
prompting for passwords (key authentication, etc.)

L.6 Update TORQUE Server Configuration

On the TORQUE server, append the list of newly configured compute nodes to the
TORQUE_HOME/server_priv/nodes file:

L.7 Start the pbs_mom Daemons on Compute Nodes

Next start the pbs_mom daemon on each compute node by running the pbs_mom executable.

L.8 Verifying Correct TORQUE Installation

The pbs_server daemon was started on the TORQUE server when the torque.setup file was executed or
when it was manually configured. It must now be restarted so it can reload the updated configuration
changes.

At this point, the job will not start because there is no scheduler running. The scheduler is enabled in the next
step below.

L.9 Enabling the Scheduler

Selecting the cluster scheduler is an important decision and significantly affects cluster utilization,
responsiveness, availability, and intelligence. The default TORQUE scheduler, pbs_sched, is very basic and
will provide poor utilization of your cluster's resources. Other options, such as Maui Scheduler or Moab
Workload Manager are highly recommended. If using Maui/Moab, refer to the Moab-PBS Integration Guide. If
using pbs_sched, start this daemon now.

server_priv/nodes
computenode001.cluster.org
computenode002.cluster.org
computenode003.cluster.org

shutdown server
> qterm # shutdown server

start server
> pbs_server

verify all queues are properly configured
> qstat -q

view additional server configuration
> qmgr -c 'p s'

verify all nodes are correctly reporting
> pbsnodes -a

submit a basic job
> echo "sleep 30" | qsub

verify jobs display
> qstat

http://www.adaptivecomputing.com/resources/docs/maui
http://www.adaptivecomputing.com/resources/docs/mwm
http://www.adaptivecomputing.com/resources/docs/mwm

If you are installing ClusterSuite, TORQUE and Moab were configured at installation for interoperability
and no further action is required.

L.10 Startup/Shutdown Service Script for TORQUE/Moab
(OPTIONAL)

Optional startup/shutdown service scripts are provided as an example of how to run TORQUE as an OS
service that starts at bootup. The scripts are located in the contrib/init.d/ directory of the TORQUE tarball
you downloaded. In order to use the script you must:

Determine which init.d script suits your platform the best.
Modify the script to point to TORQUE's install location. This should only be necessary if you used a
non-default install location for TORQUE (by using the --prefix option of ./configure).
Place the script in the /etc/init.d/ directory.
Use a tool like chkconfig to activate the start-up scripts or make symbolic links (S99moab and
K15moab, for example) in desired runtimes (/etc/rc.d/rc3.d/ on Redhat, etc.).

See Also:

Advanced Server Configuration

TORQUE Resource Manager Change Log
Legend

TORQUE 3.0
TORQUE 3.0.2
TORQUE 3.0.1
TORQUE 3.0.0

TORQUE 2.5
TORQUE 2.5.7
TORQUE 2.5.6
TORQUE 2.5.5
TORQUE 2.5.4
TORQUE 2.5.3
TORQUE 2.5.2
TORQUE 2.5.1
TORQUE 2.5.0

TORQUE 2.4
TORQUE 2.4.12
TORQUE 2.4.11
TORQUE 2.4.10
TORQUE 2.4.9
TORQUE 2.4.8
TORQUE 2.4.7
TORQUE 2.4.6
TORQUE 2.4.5
TORQUE 2.4.4
TORQUE 2.4.3
TORQUE 2.4.2
TORQUE 2.4.1
TORQUE 2.4.0

TORQUE 2.3
TORQUE 2.3.12 - This is the last offical release of TORQUE 2.3.
TORQUE 2.3.11
TORQUE 2.3.10
TORQUE 2.3.9
TORQUE 2.3.8
TORQUE 2.3.7
TORQUE 2.3.6
TORQUE 2.3.5
TORQUE 2.3.4
TORQUE 2.3.3
TORQUE 2.3.2
TORQUE 2.3.1
TORQUE 2.3.0

TORQUE 2.2
TORQUE 2.2.0

TORQUE 2.1
TORQUE 2.1.2
TORQUE 2.1.1
TORQUE 2.1.0p0

TORQUE 2.0
TORQUE 2.0.0p6
TORQUE 2.0.0p5
TORQUE 2.0.0p4
TORQUE 2.0.0p3

TORQUE 2.0.0p2
TORQUE 2.0.0p1
TORQUE 2.0.0p0

TORQUE 1.2
TORQUE 1.2.0p6
TORQUE 1.2.0p5
TORQUE 1.2.0p4
TORQUE 1.2.0p3
TORQUE 1.2.0p2
TORQUE 1.2.0p1
TORQUE 1.2.0p0

TORQUE 1.1
TORQUE 1.1.0p6
TORQUE 1.1.0p5
TORQUE 1.1.0p4
TORQUE 1.1.0p3
TORQUE 1.1.0p2
TORQUE 1.1.0p1
TORQUE 1.1.0p0

TORQUE 1.0
TORQUE 1.0.1p6
TORQUE 1.0.1p5
TORQUE 1.0.1p4
TORQUE 1.0.1p3
TORQUE 1.0.1p2
TORQUE 1.0.1p1
TORQUE 1.0.1p0

Legend
c - crash
b - bug fix
e - enhancement
f - new feature
n - note

TORQUE 3.0

3.0.2
c - check if the file pointer to /dev/console can be opened. If not, don't attempt to write it
b - fix a potential buffer overflow security issue in job names and host address names
b - restore += functionality for nodes when using qmgr. It was overwriting old properties
e - Merged revision 4711 from 2.5-fixes. This adds the -F option to qsub which allows
arguments to be passed to a job script.
b - fix bugzilla #134, qmgr -= was deleting all entries
e - added the ability in qsub to submit jobs requesting total gpus for job instead of gpus per
node: -l ncpus=X,gpus=Y
b - do not prepend ${HOME} with the current dir for -o and -e in qsub
e - allow an administator using the proxy user submission to also set the job id to be used
in TORQUE. This makes TORQUE easier to use in grid configurations.
b - fix jobs named with -J not always having the server name appended correctly
b - make it so that jobs named like arrays via -J have legal output and error file names
b - make a fix for ATTR_node_exclusive - qsub wasn't accepting -n as a valid argument

3.0.1
e - updated qsub's man page to include ATTR_node_exclusive
b - when updating the nodes file, write out the ports for the mom if needed

b - fix a bug for non-NUMA systems that was continuously increasing memory values
e - the queue files are now stored as XML, just like the serverdb
e - Added code from 2.5-fixes which will try and find nodes that did not resolve when
pbs_server started up. This is in reference to Bugzilla bug 110.
e - make gpus compatible with NUMA systems, and add the node attribute
numa_gpu_node_str for an additional way to specify gpus on node boards
e - Add code to verify the group list as well when VALIDATEGROUPS is set in torque.cfg
b - Fix a bug where if geometry requests are enabled and cpusets are enabled, the cpuset
wasn't deleted unless a geometry request was made.
b - Fix a race condition for pbs_mom -q, exitstatus was getting overwritten and as a result
pbs_server wasn't always re-queued, but were being deleted instead.
e - Add a configure option --with-tcp-retry-limit to prevent potential 4+ hour hangs on
pbs_server. We recommend --with-tcp-retry-limit=2
n - Changing the way to set ATTR_node_exclusive from -E to -n, in order to continue
compatibility with Moab.
b - preserve the order on array strings in TORQUE, like the route_destinations for a routing
queue
b - fix bugzilla #111, multi-line environment variables causing errors in TORQUE.
b - allow apostrophes in Mail_Users attributes, as apostrophes are rare but legal email
characters
b - restored functionality for -W umask as reported in bugzilla 115
b - Updated torque.spec.in to be able to handle the snapshot names of builds.
b - fix pbs_mom -q to work with parallel jobs
b - Added code to free the mom.lock file during MOM shutdown.
e - Added new MOM configure option job_starter. This options will execute the script
submitted in qsub to the executable or script provided
b - fixed a bug in set_resources that prevented the last resource in a list from being
checked. As a result the last item in the list would always be added without regard to
previous entries.
e - altered the prologue/epilogue code to allow root squashing
f - added the mom config parameter $reduce_prolog_checks. This makes it so TORQUE only
checks to verify that the file is a regular file and is executable.
e - allow more than 5 concurrent connections to TORQUE using pbsD_connect. Increase it
to 10
c - fix a segfault when receiving an obit for a job that no longer exists
e - Added options to conditionally build munge, BLCR, high-availability, cpusets, and
spooling. Also allows customization of the sendmail path.
b - expand the storage for memory usage to avoid overflow
b - also remove the procct resource when it is applied because of a default
f - Added the ability to detect Nvidia gpus using nvidia-smi (default) or NVML. Server
receives gpu statuses from pbs_mom. Added server attribute auto_node_gpu that allows
automatically setting number of gpus for nodes based on gpu statuses. Added new configure
options --enable-nvidia-gpus, --with-nvml-include and --with-nvml-lib.
c - fix a segfault when using --enable-nvidia-gpus and pbs_mom has Nvidia driver older
than 260 that still has nvidia-smi command
e - Added capability to automatically set mode on Nvidia gpus. Added support for gpu
reseterr option on qsub. The nodes file will be updated with Nvidia gpu count when --
enable-nvidia-gpu configure option is used. Moved some code out of job_purge_thread to
prevent segfault on mom.

3.0.0
e - serverdb is now stored as xml; this is no longer configurable.
f - Added --enable-numa-support for supporting NUMA-type architectures. We have tested
this build on UV and Altix machines. The server treats the MOM as a node with several
special NUMA nodes embedded, and the pbs_mom reports on these numa nodes instead of

itself as a whole.
f - For NUMA configurations, pbs_mom creates cpusets for memory as well as cpus.
e - Adapted the task manager interface to interact properly with NUMA systems, including
tm_adopt.
e - Addeded autogen.sh go make life easier in a Makefile.in-less world.
e - Modified buildutils/pbs_mkdirs.in to create server_priv/nodes file at install time. The file
only shows examples and a link to the TORQUE documentation.
f - Added ATTR_node_exclusive to allow a job to have a node exclusively.
f - Added --enable-memacct to use an extra protocol in order to accurately track jobs that
exceed their memory limits and kill them
e - When ATTR_node_exclusive is set, reserve the entire node (or entire NUMA node if
applicable) in the cpuset.
n - Changed the protocol versions for all client-to-server, mom-to-server, and mom-to-
mom protocols from 1 to 2. The changes to the protocol in this version of TORQUE will make
it incompatible with previous versions.
e - When a select statement is used, tally up the memory requests and mark the total in
the resource list. This allows memory enforcement for NUMA jobs, but doesn't affect others
as memory isn't enforced for multinode jobs.
e - Add an asynchronous option to qdel.
b - Do not reply when an asynchronous reply has already been sent.
e - Make the mem, vmem, and cput usage available on a per-mom basis using momctl -d2.
(Dr. Bernd Kallies)
e - Move the memory monitor functionality to linux/mom_mach.c in order to store the more
accurate statistics for usage, and still use it for applying limits. (Dr. Bernd Kallies)
e - When pbs_mom is compiled to use cpusets, instead of looking at all processes, only
examine the ones in cpuset task files. For busy machines (especially large systems like UVs)
this can exponentially reduce job monitoring/harvesting times. (Dr. Bernd Kallies)
e - When cpusets are configured and memory pressure enabled, add the ability to check
memory pressure for a job. Using $memory_pressure_threshold and
$memory_pressure_duration in the mom's config, the admin sets a threshold at which a job
becomes a problem. If duration is set, the job will be killed if it exceeds the threshold for
the configured number of checks. If duration isn't set, then an error is logged. (Dr. Bernd
Kallies)
e - Change pbs_track to look for the executable in the existing path so it doesn't always
need a complete path. (Dr. Bernd Kallies)
e - Report sessions on a per NUMA node basis when NUMA is enabled. (Dr. Bernd Kallies)
b - Merged revision 4325 from 2.5-fixes. Fixed a problem where the -m n (request no mail
on qsub) was not always being recongnized.
e - Merged buildutils/torque.spec.in from 2.4-fixes. Refactored torque spec file to comply
with established RPM best practices, including the following:

- Standard installation locations based on RPM macro configuration (e.g., %{_prefix})
- Latest upstream RPM conditional build semantics with fallbacks for older versions of
RPM (e.g., RHEL4)
- Initial set of optional features (GUI, PAM, syslog, SCP) with more planned
- Basic working configuration automatically generated at install-time
- Reduce the number of unnecessary subpackages by consolidating where it makes
sense and using existing RPM features (e.g., --excludedocs)

TORQUE 2.5

2.5.7
e - Added new qsub argument -F. This argument takes a quoted string as an argument. The
string is a list of space separated commandline arguments which are available to the job
script.

e - Added an option to asynchronously delete jobs (currently cannot work for qdel -a all due
to limitations of single threads) backported from 3.0.2
c - Fix an issue where job_purge didn't protect key variables that resulted in crashes
b - fix bugzilla #134, qmgr -= was deleting all entries (backported from 3.0.2)
b - do not prepend ${HOME} with the current dir for -o and -e in qsub (backported from
3.0.2)
b - fix jobs named with -J not always having the server name appended correctly
(backported from 3.0.2)
b - make it so that jobs named like arrays via -J have legal output and error file names
(backported from 3.0.2)
b - Fixed a bug for high availability. The -l listener option for pbs_server was not complete
and did not allow pbs_server to properly communicate with the scheduler. Also fixed a bug
with job dependencies where the second server or later in the
$TORQUE_HOME/server_name directory was not added as part of the job dependecny so
dependent jobs would get stuck on hold if the current server was not the first server in the
server_name file.
b - Fixed a potential buffer overflow problem in src/resmom/checkpoint.c function
mom_checkpoint_recover. I modified the code to change strcpy and strcat to strncpy and
strncpy.

2.5.6
b - Made changes to record_jobinfo and supporting functions to be able to use dynamically
allcated buffers for data. This fixed a problem where incoming data overran fixed sized
buffers.
b - restored functionality for -W umask as reported in bugzilla 115 (backported from 3.0.1)
b - Updated torque.spec.in to be able to handle the snapshot names of builds.
e - Added new MOM configure option job_starter. This options will execute the script
submitted in qsub to the executable or script provided as the argument to the job_starter
option of the MOM configure file.
b - fix pbs_mom -q to work with parallel jobs (backported from 3.0.1)
b - fixed a problem with pbs_server high availability where the current server could not keep
the HA lock. The problem was a result of truncating the directory name where the lock file
was kept. TORQUE would fail to validate permissions because it would do a stat on the
wrong directory.
b - Added code to free the mom.lock file during MOM shutdown.
b - fixed a bug in set_resources that prevented the last resource in a list from being
checked. As a result the last item in the list would always be added without regard to
previous entries.
e - Added new symbol JOB_EXEC_OVERLIMIT. When a job exceeds a limit (i.e. walltime)
the job will fail with the JOB_EXEC_OVERLIMIT value and also produce an abort case for
mailing purposes. Previous to this change a job exceeding a limit returned 0 on success and
no mail was sent to the user if requested on abort.
e - Added options to buildutils/torque.spec.in to conditionally build munge, BLCR, high-
availability, cpusets, and spooling. Also allows customization of the sendmail path and
allows for optional XML conversion to serverdb.
b - --with-tcp-retry-limit now actually changes things without needing to run autoheader
e - Added a new queue resource named procct. procct allows the administrator to set queue
limits based on the number of total processors requested in a job. Patch provided by Martin
Siegert.
e - allow more than 5 concurrent connections to TORQUE using pbsD_connect. Increase it
to 10 (backported from 3.0.1)
b - fix a segfault when receiving an obit for a job that no longer exists (backported from
3.0.1)
b - also remove the procct resource when it is applied because of a default (backported
from 3.0.1)

e - allow an administator using the proxy user submission to also set the job id to be used
in TORQUE. This makes TORQUE easier to use in grid configurations. (backported from
3.0.2)
c - fix a segfault when queue has acl_group_enable and acl_group_sloppy set true and no
acl_groups are defined. (backported from 3.0.1)
f - Added the ability to detect Nvidia gpus using nvidia-smi (default) or NVML. Server
receives gpu statuses from pbs_mom. Added server attribute auto_node_gpu that allows
automatically setting number of gpus for nodes based on gpu statuses. Added new configure
options --enable-nvidia-gpus, --with-nvml-include and --with-nvml-lib.
e - The -e and -o options of qsub allow a user to specify a path or optionally a filename for
output. If the path given by the user ended with a directory name but no '/' character at the
end then TORQUE was confused and would not convert the .OU or .ER file to the final
output/error file. The code has now been changed to stat the path to see if the end path
element is a path or directory and handled appropriately.
c - fix a segfault when using --enable-nvidia-gpus and pbs_mom has Nvidia driver older
than 260 that still has nvidia-smi command
e - Added new MOM configuration option $rpp_throttle. The syntax for this in the
$TORQUE_HOME/mom_priv/config file is $rpp_throttle <value> where value is a long
representing microseconds. Setting this values causes rpp data to pause after every sendto
for <value> microseconds. This may help with large jobs where full data does not arrive at
sister nodes.
c - check if the file pointer to /dev/console can be opened. If not, don't attempt to write it
(backported from 3.0.2)
b - Added patch from Michael Jennings to buildutils/torque.spec.in. This patch allows an rpm
configured with DRMAA to complete even if all of the support files are not present on the
system.
b - commited patch submitted by Michael Jennings to fix bug 130. TORQUE on the MOM
would call lstat as root when it should call it as user in open_std_file.
e - Added capability to automatically set mode on Nvidia gpus. Added support for gpu
reseterr option on qsub. Removed server attribute auto_node_gpu. The nodes file will be
updated with Nvidia gpu count when --enable-nvidia-gpu configure option is used. Moved
some code out of job_purge_thread to prevent segfault on mom.
b - Fixed problem where calling qstat with a non-existent job id would hang the qstat
command. This was only a problem when configured with MUNGE.
b - fix a potential buffer overflow security issue in job names and host address names
b - restore += functionality for nodes when using qmgr. It was overwriting old properties
(backported from 3.0.2)
e - Applied patch submitted by Eric Roman. This patch addresses some build issues with
BLCR, and fixes an error where BLCR would report -ENOSUPPORT when trying to checkpoint
a parallel job. The patch adds a --with-blcr option to configure to find the path to the BLCR
libaries. There are --with-blcr-include, --with-blcr-lib and --with-blcr-bin to override the
search paths, if necessary. The last option, --with-blcr-bin is used to generate
contrib/blcr/checkpoint_script and contrib/blcr/restart_script from the information supplied
at configure time.
b - Added the -l (listener) option to the man page for pbs_server. The -l option has been
part of TORQUE for quite some time but the option has never been documented.

2.5.5
b - change so gpus get written back to nodes file
e - make it so that even if an array request has multiple consecutive '%' the slot limit will
be set correctly
b - Fixed bug in job_log_open where the global variable logpath was freed instead of
joblogpath.
b - Fixed memory leak in function procs_requested.
b - Validated incoming data for escape_xml to prevent a seg-fault with incoming null
pointers
e - Added submit_host and init_work_dir as job attributes. These two values are now
displayed with a qstat -f. The submit_host is the name of the host from where the job was
submitted. init_work_dir is the working directory as in PBS_O_WORKDIR.
e - change so blcr checkpoint jobs can restart on different node. Use configure --enable-blcr

to allow.
b - remove the use of a GNU specific function, and fix an error for solaris builds
b - Updated PBS_License.txt to remove the implication that the software is not freely
redistributable.
b - remove the $PBS_GPUFILE when job is done on mom
b - fix a race condition when issuing a qrerun followed by a qdel that caused
the job to be queued instead of deleted sometimes.
e - Implemented Bugzilla Bug 110. If a host in the nodes file cannot be resolved at startup
the server will try once every 5 minutes until the node will resolve and it will add it to the
nodes list.
e - Added a "create" method to pbs_server init.d script so a serverdb file can be created if it
does not exist at startup time. This is an enhancement in reference to Bugzilla bug 90.
e - Add code to verify the group list as well when VALIDATEGROUPS is set in torque.cfg
(backported from 3.0.1)
b - Fix a bug where if geometry requests are enabled and cpusets are enabled, the cpuset
wasn't deleted unless a geometry request was made. (backported from 3.0.1)
b - Fix a race condition when starting pbs_mom with the -q option. exitstatus was getting
overwritten and as a result jobs would not always be requeued to pbs_server but were
being deleted instead. (backported from 3.0.1)
e - Add a configure option --with-tcp-retry-limit to prevent potential 4+ hour hangs on
pbs_server. We recommend --with-tcp-retry-limit=2 (backported from 3.0.1)
b - preserve the order on array strings in TORQUE, like the route_destinations for a routing
queue (backported from 3.0.1)
b - fix bugzilla #111, multi-line environment variables causing errors in TORQUE.
(backported from 3.0.1)
b - allow apostrophes in Mail_Users attributes, as apostrophes are rare but legal email
characters (backported from 3.0.1)
b - Fixed a problem in parse_node_token where the local static variable pt would be
advanced past the end of the line input if there is no newline character at the end of the
nodes file.

2.5.4
f - added the ability to track gpus. Users set gpus=X in the nodes file for relevant node, and
then request gpus in the nodes request: -l nodes=X[:ppn=Y][:gpus=Z]. The gpus appear in
$PBS_GPUFILE, a new environment variable, in the form: <hostname>-gpu<index> and in
a new job attribute exec_gpus: <hostname>-gpu/<index>[+<hostname>-gpu/<index>...]
b - clean up job MOM checkpoint directory on checkpoint failure
e - Bugzilla bug 91. Check the status before the service is actually started. (Steve Traylen -
CERN)
e - Bugzilla bug 89. Only touch lock/subsys files if service actually starts. (Steve Traylen -
CERN)
c - when using job_force_cancel_time, fix a crash in rare cases
e - add server parameter moab_array_compatible. When set to true, this parameter places
a limit hold on jobs past the slot limit. Once one of the unheld jobs completes or is deleted,
one of the held jobs is freed.
b - fix a potential memory corruption for walltime remaining for jobs (Vikentsi Lapa)

b - fix potential buffer overrun in pbs_sched (Bugzilla #98, patch from Stephen Usher @
University of Oxford)
e - check if a process still exists before killing it and sleeping. This speeds up the time for
killing a task exponentially, although this will show mostly for SMP/NUMA systems, but it will
help everywhere. (Dr. Bernd Kallies)
b - Fixed a problem where the -m n (request no mail on qsub) was not always being
recongnized.
b - Added patch for bug 101 by Martin Siegert. A null string was causing a segfault in
pbs_server when record_jobinfo called into attr_to_string.
b - Submitted patch from Vikentsi Lapa for bug 104. This patch adds the global variable
pbsuser and sets it to the user id of the current user. This was needed for cygwin because
the code had hard coded the value of 0 for root for seteuid. In the case of cygwin root
cannot be used.
b - Fix for reque failures on mom. Forked pbs_mom would silently segfault and job was left
in Exiting state.
b - prevent the nodes file from being overwritten when running make packages
b - change so "mom_checkpoint_job_has_checkpoint" and "execing command" log
messages do not always get logged

2.5.3
b - stop reporting errors on success when modifying array ranges
b - don't try to set the user id multiple times
b - added some retrying to get connection and changed some log messages when doing a
pbs_alterjob after a checkpoint
c - fix segfault in tracejob. It wasn't malloc'ing space for the null terminator
e - add the variables PBS_NUM_NODES and PBS_NUM_PPN to the job environment (TRQ-6)
e - be able to append to the job's variable_list through the API (TRQ-5)
e - Added support for munge authentication. This is an alternative for the default ruserok
remote authentication and pbs_iff. This is a compile time option. The configure option to use
is --enable-munge-auth. Ken Nielson (TRQ-7) September 15, 2010.
b - fix the dependency hold for arrays. They were accidentally cleared before (RT 8593)
e - add a logging statement if sendto fails at any points in rpp_send_out
b - Applied patch submitted by Will Nolan to fix bug 76. "blocking read does not time out
using signal handler"
e - Added functionality that allows the values for the server parameter authorized_users to
use wild cards for both the user and host portion.
c - corrected a segfault when display_job_server_suffix is set to false and job_suffix_alias
was unset.
b - Bugzilla bug 84. Security bug on the way checkpoint is being handled. (Robin R. - Miami
Univ. of Ohio)
e - Now saving serverdb as an xml file instead of a byte-dump, thus allowing canned
installations without qmgr scripts, as well as more portability. Able to upgrade automatically
from 2.1, 2.3, and 2.4
e - serverdb as xml is now optional, and it has to be configured with --enable-server-xml.

Each setting (normal and xml-enabled) can load the other format
e - Created the ability to log all jobs to a file. The new file is located under
$TORQUE_HOME/job_logs. The file follows the same naming format as server_logs and
mom_logs. The name is derived from the current date. This log file is optional. It can be
activated using a new server parameter record_job_info. By default this is false. If set to
true it will begin recording every job record when the job is purged.
b - fix to cleanup job files on MOM after a BLCR job is checkpointed and held
b - make the tcp reading buffer able to grow dynamically to read larger values in order to
avoid "invalid protocol" messages
e - change so checkpoint files are transfered as the user, not as root.
f - Added configure option --with-servchkptdir which allows specifying path for server's
checkpoint files
b - could not set the server HA parameters lock_file_update_time and lock_file_check_time
previously. Fixed.
e - Added new server parameter record_job_script. This works with record_job_info. These
are both boolean values and default to false. record_job_info must be true in order for
record_job_script to be enabled. If both values are enabled the entire content of the job
script will be recorded to the job log file.
e - qpeek now has the options --ssh, --rsh, --spool, --host, -o, and -e. Can now output
both the STDOUT and STDERR files. Eliminated numlines, which didn't work.
e - Added the server parameters job_log_file_max_size, job_log_file_roll_depth and
job_log_keep_days to help manage job log files.
b - fix to prevent a possible segfault when using checkpointing.

2.5.3
e - Allow the nodes file to use the syntax node[0-100] in the name to create identical nodes
with names node0, node1, ..., node100. (also node[000-100] => node000, node001, ...
node100)
b - fix support of the 'procs' functionality for qsub.
b - remove square brackets [] from job and default stdout/stderr filenames for job arrays
(fixes conflict with some non-bash shells)
n - fix build system so README.array_changes is included in tar.gz file made with "make
dist"
n - fix build system so contrib/pbsweb-lite-0.95.tar.gz, contrib/qpool.gz and

contrib/README.pbstools are included the the tar.gz file made with "make dist"
c - fixed crash when moving the job to a different queue (bugzilla 73)
e - Modified buildutils/pbs_mkdirs.in to create server_priv/nodes file at install time. The file
only shows examples and a link to the TORQUE documentation. This enhancement was first
committed to trunk.
c - fix pbs_server crash from invalid qsub -t argument
b - fix so blcr checkpoint jobs work correctly when put on hold
b - fixed bugzilla #75 where pbs_server would segfault with a double free when calling
qalter on a running job or job array.
e - Changed free_br back to its original form and modifed copy_batchrequest to make a
copy of the rq_extend element which will be freed in free_br.
b - fix condition where job array "template" may not get cleaned up properly after a server
restart
b - fix to get new pagg ID and add additional CSA records when restarting from checkpoint
e - added documentation for pbs_alterjob_async(), pbs_checkpointjob(), pbs_fbserver(),
pbs_get_server_list() and pbs_sigjobasync().
b - Commited patch from Eygene Ryanbinkin to fix bug 61. /dev/null would under some
circumstances have its permissions modified when jobs exited on a compute node.
b - only clear the MOM state when actually running the health check script
e - allow input of walltime in the format of [DD]:HH:MM:SS
b - Fix so BLCR checkpoint files get copied to server on qchkpt and periodic checkpoints

2.5.1
b - modified Makefile.in and Makefile.am at root to include contrib/AddPrivileges

2.5.0
b - Updated URLs in README.torque file at root of build.
b - Updated URLs in INSTALL file at root of build.
e - Added new server config option alias_server_name. This option allows the MOM to add
an additional server name to be added to the list of trusted addresses. The point of this is to
be able to handle alias ip addresses. UDP requests that come into an aliased ip address are
returned through the primary ip address in TORQUE. Because the address of the reply
packet from the server is not the same address the MOM sent its HELLO1 request, the MOM
drops the packet and the MOM cannot be added to the server.
b - When the server parameter auto_node_np is set to true it is suppose to set the number
of processors of a node to the value returned by the MOM in the ncpus value as returned in
pbsnodes. If the configured processor value is less thanncpus the value is adjusted but if it
is greater the value was not adjusted. This fix enables pbs_server to adjust processor
values down as well as up.
e - Changed qsub to allow for a -l nodes=x+procs=y syntax.
b - Made a fix to qmgr.c in is_attr. When checking node names against attribute keywords
is_attr used strncmp and limited the length of the compare to the length of the keyword. So
node names like stateless were tagged as an error. (replaced strncmp with strcmp)
e - Enabled TORQUE to be able to parse the -l procs=x node spec. Previously TORQUE
simply recored the value of x for procs in Resources_List. It now takes that value and
allocates x processors packed on any available node. (Ken Nielson Adaptive Computing. June
17, 2010)

f - added full support (server-scheduler-mom) for Cygwin (UIIP NAS of Belarus, uiip.bas-
net.by)
f - architecture and build system changes to support Cygwin (Igor Ilyenko, UIIP Minsk)
b - fixed EINPROGRESS in net_client.c. This signal appears every time of connecting and
requires individual processing. The old erroneous processing brought to big network delay,
especially on Cygwin.
e - improved signal processing after connecting in client_to_svr and added own
implementation of bindresvport for OS which lack it (Igor Ilyenko, UIIP Minsk)
f - created permission checking of Windows (Cygwin) users, using mkpasswd, mkgroup and
own functions IamRoot, IamUser (Yauheni Charniauski, UIIP Minsk)
f - created permission checking of submited jobs (Vikentsi Lapa, UIIP Minsk)
f - Added the --disable-daemons configure option for start server-sched-mom as Windows
services, cygrunsrv.exe goes its into background independently.
e - Adapted output of Cygwin's diagnostic information (Yauheni Charniauski, UIIP Minsk)
b - Changed pbsd_main to call daemonize_server early only if high_availability_mode is set.
e - removed the very old A_ macros (patch provided by Simon Toth, CESNET z.s.p.o.)
e - added new qmgr server attributes (clone_batch_size, clone_batch_delay) for controlling
job cloning (Bugzilla #4)
e - added new qmgr attribute (checkpoint_defaults) for setting default checkpoint values on
Execution queues (Bugzilla #1)
b - Merged revision 3268 from 2.4-fixes. removed block of code that broke pbs_statjob for
requested attributes
e - print a more informative error if pbs_iff isn't found when trying to authenticate a client
n - 01/18/2010. Merged 2.4.5 revisions 3268-3375.
e - added qmgr server attribute job_start_timeout, specifies timeout to be used for sending
job to mom. If not set, tcp_timeout is used.
e - added -DUSESAVEDRESOURCES code that uses servers saved resources used for
accounting end record instead of current resources used for jobs that stopped running while
MOM was not up.
e - TORQUE job arrays now use arrays to hold the job pointers and not linked lists (allows
constant lookup).
f - Allow users to delete a range of jobs from the job array (qdel -t)
f - Added a slot limit to the job arrays - this restricts the number of jobs that can
concurrently run from one job array.
f - added support for holding ranges of jobs from an array with a single qhold (using the -t
option).
f - now ranges of jobs in an array can be modified through qalter (using the -t option).
f - jobs can now depend on arrays using these dependencies: afterstartarray, afterokarray,
afternotokarray, afteranyarray
f - added support for using qrls on arrays with the -t option
e - complte overhaul of job array submission code
f - by default show only a single entry in qstat output for the whole array (qstat -t expands
the job array)
f - server parameter max_job_array_size limits the number of jobs allowed in an array
b - job arrays can no longer circumvent max_user_queuable
b - job arrays can no longer circumvent max_queuable
f - added server parameter max_slot_limit to restrict slot limits
e - changed array names from jobid-index to jobid[index] for consistency
n - TORQUE 2.5.0 released on 19-07-10

TORQUE 2.4

2.4.12
b - Bugzilla bug 84. Security bug on the way checkpoint is being handled. (Robin R. - Miami
Univ. of Ohio, back-ported from 2.5.3)
b - make the tcp reading buffer able to grow dynamically to read larger values in order to
avoid "invalid protocol" messages (backported from 2.5.3)
b - could not set the server HA parameters lock_file_update_time and lock_file_check_time

previously. Fixed. (backported from 2.5.3)
e - qpeek now has the options --ssh, --rsh, --spool, --host, -o, and -e. Can now output
both the STDOUT and STDERR files. Eliminated numlines, which didn't work. (backported
from 2.5.3)
b - Modified the pbs_server startup routine to skip unknown hosts in the nodes file instead
of terminating the server startup.
b - fix to prevent a possible segfault when using checkpointing (back-ported from 2.5.3).
b - fix to cleanup job files on MOM after a BLCR job is checkpointed and held (back-ported
from 2.5.3)
c - when using job_force_cancel_time, fix a crash in rare cases (backported from 2.5.4)
b - fix a potential memory corruption for walltime remaining for jobs (Vikentsi Lapa,
backported from 2.5.4)
b - fix potential buffer overrun in pbs_sched (Bugzilla #98, patch from Stephen Usher @
University of Oxford, backported from 2.5.4)
e - check if a process still exists before killing it and sleeping. This speeds up the time for
killing a task exponentially, although this will show mostly for SMP/NUMA systems, but it will
help everywhere. (backported from 2.5.4) (Dr. Bernd Kallies)
e - Refactored torque spec file to comply with established RPM best practices, including the
following:

Standard installation locations based on RPM macro configuration (e.g., %{_prefix})
Latest upstream RPM conditional build semantics with fallbacks for older versions of
RPM (e.g., RHEL4)
Initial set of optional features (GUI, PAM, syslog, SCP) with more planned
Basic working configuration automatically generated at install-time
Reduce the number of unnecessary subpackages by consolidating where it makes
sense and using existing RPM features (e.g., --excludedocs).

b - Merged revision 4325 from 2.5-fixes. Fixed a problem where the -m n (request no mail
on qsub) was not always being recongnized.
b - Fix for reque failures on mom. Forked pbs_mom would silently segfault and job was left
in Exiting state. (backported from 2.5.4)
b - prevent the nodes file from being overwritten when running make packages

2.4.11
b - changed type cast for calloc of ioenv from sizeof(char) to sizof(char *) in pbsdsh.c. This
fixes bug 79.
e - allow input of walltime in the format of [DD]:HH:MM:SS (backported from 2.5.2)
b - only clear the MOM state when actually running the health check script (backported
from 2.5.3)
b - don't try to set the user id multiple times - (backported from 2.5.3)
c - fix segfault in tracejob. It wasn't malloc'ing space for the null terminator (back-ported
from 2.5.3)
e - add the variables PBS_NUM_NODES and PBS_NUM_PPN to the job environment
(backported from 2.5.3, TRQ-6)
e - be able to append to the job's variable_list through the API (backported from 2.5.3,
TRQ-5)
b - Added patch to fix bug 76, "blocking read does not time out using signal handler.

2.4.10
b - fix to get new pagg ID and add additional CSA records when restarting from checkpoint
(backported from 2.5.2)
e - added documentation for pbs_alterjob_async(), pbs_checkpointjob(), pbs_fbserver(),

pbs_get_server_list() and pbs_sigjobasync(). (backported from 2.5.2)
b - fix for bug 61. The fix takes care of a problem where pbs_mom under some situations
will change the mode and permissions of /dev/null.

2.4.9
b - Backed out enhancement for preempted jobs. This was SVN revision 3784. This patch
cased qrun to hang and not return when executing jobs.
e - Commited changes that changed how preempted jobs are killed. This change uses a
SIGTERM followed by a kill_delay SIGKILL to give preemted jobs time to checkpoint before
terminating.
e - Patch to correctly log attempts to create a cpuset as debug messages. The function
im_request() in src/resmom/mom_comm.c logs the message:
pbs_mom: LOG_ERROR::im_request, about to create cpuset for job 55100.blah
as an error rather than a debug message (as used in src/resmom/start_exec.c).
The fix is to replace:
log_err(-1, id, log_buffer);
with:
log_ext(-1, id, log_buffer, LOG_INFO);
b - Modified fix in qmgr.c in is_attr to check for the '.' character on resource attributes such
as resources_available.nodect. The attribute is striped of the '.' and the element and just
the attribute name is used to compare for a valid attribute.
b - Made a fix to qmgr.c in is_attr. When checking node names against attribute keywords
is_attr used strncmp and limited the length of the compare to the length of the keyword. So
node names like stateless were tagged as an error. I replaced strncmp with strcmp. This fix
was added to trunk first. Version 2.5.0
b - Bugzilla bug 57. Check return value of malloc for tracejob for Linux (Chris Samuel -
Univ. of Melbourne)
b - fix so "gres" config gets displayed by pbsnodes
b - use QSUBHOST as the default host for output files when no host is specified. (RT 7678)
e - allow users to use cpusets and geometry requests at the same time by specifying both
at configure time.
b - Bugzilla bug 55. Check return value of malloc for pbs_mom for Linux (Chris Samuel -
Univ. of Melbourne)
e - added server parameter job_force_cancel_time. When configured to X seconds, a job
that is still there X seconds after a qdel will be purged. Useful for freeing nodes from a job
when one node goes down midjob.
b - fixed gcc warnings reported by Skip Montanaro
e - added RPT_BAVAIL define that allows pbs_mom to report f_bavail instead of f_bfree on
Linux systems
b - no longer consider -t and -T the same in qsub
e - make PBS_O_WORKDIR accessible in the environment for prolog scripts
e - Bugzilla 59. Applied patch to allow '=' for qdel -m. (Chris Samuel - Univ. of Melbourne)
b - properly escape characters (&"'<>) in XML output)
b - ignore port when checking host in svr_get_privilege()
b - restore ability to parse -W x=geometry:{...,...}
e - from Simon Toth: If no available amount is specified for a resource and the max limit is
set, the requirement should be checked against the maximum only (for scheduler, bugzilla
23).
b - check return values from fwrite in cpuset.c to avoid warnings
e - expand acl host checking to allow * in the middle of hostnames, not just at the
beginning. Also allow ranges like a[10-15] to mean a10, a11, ..., a15.

2.4.8
e - Bugzilla bug 22. HIGH_PRECISION_FAIRSHARE for fifo scheduling.

c - no longer sigabrt with "running" jobs not in an execution queue. log an error.
b - fixed kill_delay. In order to fix and not change behavior, added the parameter
$kill_delay to mom's config. Activate by setting to true
b - commented out a 'fi' left uncommented in contrib/init/pbs_server
e - mapped 'qsub -P user:group' to qsub -P user -W group_list=group
e - added -DQSUBHOSTNAME to allow qsub to determine PBS_O_HOST
b - fixed segfault for when TORQUE thinks there's a nanny but there isn't
b - reverted to old behavior where interactive scripts are checked for directives and not run
without a parameter.
e - setting a queue's resource_max.nodes now actually restricts things, although so far it
only limits based on the number of nodes (i.e. not ppn)
f - added QSUBSENDGROUPLIST to qsub. This allows the server to know the correct group
name when disable_server_id_check is set to true and the user doesn't exist on the server.
e - Bugzilla bug 54. Patch submitted by Bas van der Vlies to make pbs_mkdirs more robust,
provide a help function and new option -C <chk_tree_location>
n - TORQUE 2.4.8 released on 29-04-10

2.4.7
b - fixed a bug for when a resource_list has been set, but isn't completely initialized,
causing a segfault
b - stop counting down walltime remaining after a job is completed
b - correctly display the number for tasks as used in TORQUE in qstat -a output
b - no longer ignoring fread return values in Linux cpuset code (gcc 4.3.3)
b - fixed a bug where job was added to obit retry list multiple times, causing a segfault
b - Fix for Bugzilla bug 43. "configure ignores with-modulefiles=no"
b - no longer try to decide when to start with -t create in init.d scripts, -t creates should be
done manually by the user
b - no longer let qsub determine the PBS_O_HOST. This work is done on the server and the
server code accounts for the connection interface as well as aliasing. Code to set
PBS_O_HOST on the server is already there, but now will be active.
f - added -P to qsub. When submitting a job as root, the root user may add -P <username>
to submit the job as the proxy user specified by <usermname>
n - 2.4.7 released on 29-03-10

2.4.6
f - added an asynchronous option for qsig, specified with -a.
b - fix to cleanup job that is left in running state after a MOM restart
e - qsub's -W can now parse attributes with quoted lists, for example: qsub script -W
attr="foo,foo1,foo2,foo3" will set foo,foo1,foo2,foo3 as attr's value.
e - qstat -f now includes an extra field "Walltime Remaining" that tells the remaining
walltime in seconds. This field is does not account for weighted walltime.
b - fixed erroneous display of walltime when start time hasn't been set
b - fixed possible segfault when finding remaining walltime (if the job's resources haven't
been defined)
e - altered the display of walltime remaining so that the xml produced by qstat -f stays
consistent. Also updated the man page.
b - split Cray job library and CSA functionality since CSA is dependant on job library but job
library is not dependant on CSA
f - added two server parameters: display_job_server_suffix and job_suffix_alias. The first
defaults to true and is whether or not jobs should be appended by .server_name. The
second defaults to NULL, but if it is defined it will be appended at the end of the jobid, i.e.
jobid.job_suffix_alias.
f - added -l option to qstat so that it will display a server name and an alias if both are
used. If these aren't used, -l has no effect.
b - fixed an off by one error for a case in get_correct_jobname

e - altered the display_job_server_suffix parameter and the job_suffix_alias parameter so
that they don't interfere with FQDN.
b - fixed open_std_file to setegid as well, this caused a problem with epilogue.user scripts.
n - 2.4.6 officially released on 02/24/2010

2.4.5
b - epilogue.user scripts were being run with prologue argments. Fixed bug in run_pelog()
to include PE_EPILOGUSER so epilogue arguments get passed to eplilogue.user script.
b - Ticket 6665. pbs_mom and job recovery. Fixed a bug where the -q option would
terminate running processes as well as requeue jobs. This made the -q option the same as
the -r option for pbs_mom. -q will now only reque jobs and will not attempt to kill running
processes. I also added a -P option to start pbs_mom. This is similar to the -p option
except the -P option will only delete any left over jobs from the queue and will not attempt
to adopt and running processes.
e - Modified man page for pbs_mom. Added new -P option plus edited -p, -q and -r options
to hopefully make them more understandable.
n - 01/15/2010 created snapshot torque-2.4.5-snap201001151416.tar.gz.
b - now checks secondary groups (as well as primary) for creating a file when spooling.
Before it wouldn't create the spool file if a user had permission through a secondary group.
b - fixed a file descriptor error with high availability. Before it was possible to try to regain a
file descriptor which was never held, now this is fixed.
e - Added the function prepare_child_tasks_for_delete() to src/resmom/solaris5
/mom_mach.c. This is required for new -P functionality.
b - updated to a newer gcc and fixed warnings related to disregarded return values.
Logging was added.
b - Modified code specific to Solaris5 platform. Changes were made so TORQUE would
successfully compile on sun system. Tcl still does not successfully compile. configure needs
to be done with the --disable-gui option. 01/21/2010.
e - Moved the function prepare_child_tasks_for_delete() from the mom_mach.c files for
Linux and Solaris5. This routine is not platform dependent.
No other platform had the function yet. 01/22/2010
e - Commited changes that will allow TORQUE to compile on the Solaris5 platform with gcc-
warnings enabled.
b - No longer overwrites the user's environment when spoolasfinalname is set. Now the
environment is handled correctly.
b - No longer will segfault if pbs_mom restarts in a bad state (user environment not
initialized)
e - added qmgr server attribute job_start_timeout, specifies timeout to be used for sending

job to mom. If not set, tcp_timeout is used.
e - added -DUSESAVEDRESOURCES code that uses servers saved resources used for
accounting end record instead of current resources used for
jobs that stopped running while MOM was not up.
e - Changing MAXNOTDEFAULT behavior. Now, by default, max is not default and max can
be configured as default with --enable-maxdefault.
n - TORQUE 2.4.5 released on 02/02/10 (Groundhog day!)

2.4.4
b - fixed contrib/init.d/pbs_mom so that it doesn't overwrite $args defined in
/etc/sysconfig/pbs_mom
b - when spool_as_final_name is configured for the mom, no longer send email messages
about not being able to copy the spool file
b - when spool_as_final_name is configured for the mom, correctly substitue job
environment variables
f - added logging for email events, allows the admin to check if emails are being sent
correctly
b - Made a fix to svr_get_privilege(). On some architectures a non-root user name would be
set to null after the line " host_no_port[num_host_chars] = 0;" because num_host_chars
was = 1024 which was the size of hot_no_port. The null termination needed to happen at
1023. There were other problems with this function so code was added to validate the
incoming variables before they were used. The symptom of this bug was that non-root
managers and operators could not perform operations where they should have had rights.
b - Missed a format statement in an sprintf statement for the bug fix above.
b - Fixed a way that a file descriptor (for the server lockfile) could be used without
initialization. RT 6756

2.4.3
b - fix PBSD_authenticate so it correctly splits PATH with : instead of ; (bugzilla #33)
e - Refactored tcp_dis function calls. With the removal of the global variable dis_buffer the
seperation of dis calls was no longer needed. the tcp_dis function calls have been removed
and all calls go to the dis functions whether using tcp or rpp.
b - pbs_mom now sets resource limits for tasks started with tm_spawn (Chris Samuel,
VPAC)
c - fix assumption about size of unsocname.sun_path in Libnet/net_server.c
b - Fix for Bugzilla bug 34. "torque 2.4.X breaks OSC's mpiexec". fix in src/server
src/server/stat_job.c revision 3268.
b - Fix for Bugzilla bug 35 - printing the wrong pid (normal mode) and not printing any pid
for high availability mode.
f - added a diagnostic script (contrib/diag/tdiag.sh). This script grabs the log files for the
server and the mom, records the output of qmgr -c 'p s' and the nodefile, and creates a
tarfile containing these.
b - Changed momctl -s to use exit(EXIT_FAILURE) instead of return(-1) if a mom is not
running.
b - Fix for Bugzilla bug 36. "qsub crashes with long dependency list".
b - Fix for Bugzilla bug 41. "tracejob creates a file in the local directory".

2.4.2
b - Changed predicate in pbsd_main.c for the two locations where daemonize_server is
called to check for the value of high_availability_mode to determine when to put the server
process in the background.
b - Added pbs_error_db.h to src/include/Makefile.am and src/include/Makefile.in.
pbs_error_db.h now needed for install.
e - Modified pbs_get_server_list so the $TORQUE_HOME/server_name file will work with a
comma delimited string or a list of server names separated by a new line.
b - fix tracejob so it handles multiple server and MOM logs for the same day
f - Added a new server parameter np_default. This allows the administrator to change the
number of processors to a unified value dynamically for the entire cluster.
e - high availability enhanced so that the server spawns a separate thread to update the
"lock" on the lockfile. Thread update and check time are both setable parameters in qmgr.
b - close empty ACL files

2.4.1
e - added a prologue and epilogue option to the list of resources for qsub -l which allows a
per job prologue or epilogue script. The syntax for the new option is qsub -l
prologue=<prologue script>, epilogue=<epilogue script>
f - added a "-w" option to qsub to override the working directory
e - changes needed to allow relocatable checkpoint jobs. Job checkpoint files are now under
the control of the server.
c - check filename for NULL to prevent crash
b - changed so we don't try to copy a local file when the destination is a directory and the
file is already in that directory
f - changes to allow TORQUE to operate without pbs_iff (merged from 2.3)
e - made logging functions rentrant safe by using localtime_r instead of localtime() (merged
from 2.3)
e - Merged in more logging and NOSIGCHLDMOM capability from Yahoo branch
e - merged in new log_ext() function to allow more fine grained syslog events, you can now
specify severity level. Also added more logging statements
b - fixed a bug where CPU time was not being added up properly in all cases (fix for Linux
only)
c - fixed a few memory errors due to some uninitialized memory being allocated (ported
from 2.3 R2493)
e - added code to allow compilers to override CLONE_BATCH_SIZE at configure time (allows

for finer grained control on how arrays are created) (ported from Yahoo R2461)
e - added code which prefixes the severity tag on all log_ext() and log_err() messages
(ported from Yahoo R2358)
f - added code from 2.3-extreme that allows TORQUE to handle more than 1024 sockets.
Also, increased the size of TORQUE's internal socket handle table to avoid running out of
handles under busy conditions.
e - TORQUE can now handle server names larger than 64 bytes (now set to 1024, which
should be larger than the max for hostnames)
e - added qmgr option accounting_keep_days, specifies how long to keep accounting files.
e - changed MOM config varattr so invoked script returns the varattr name and value(s)
e - improved the performance of pbs_server when submitting large numbers of jobs with
dependencies defined
e - added new parameter "log_keep_days" to both pbs_server and pbs_mom. Specifies how
long to keep log files before they are automatically removed
e - added qmgr server attribute lock_file, specifies where server lock file is located
b - change so we use default file name for output / error file when just a directory is
specified on qsub / qalter -e -o options
e - modified to allow retention of completed jobs across server shutdown
e - added job_must_report qmgr configuration which says the job must be reported to
scheduler. Added job attribute "reported". Added PURGECOMP
functionality which allows scheduler to confirm jobs are reported. Also added -c option to
qdel. Used to clean up unreported jobs.
b - Fix so interactive jobs run when using $job_output_file_umask userdefault
f - Allow adding extra End accounting record for a running job that is rerun. Provides usage
data. Enabled by CFLAGS=-DRERUNUSAGE.
b - Fix to use queue/server resources_defaults to validate mppnodect against
resources_max when mppwidth or mppnppn are not specified for job
f - merged in new dynamic array struct and functions to implement a new (and more
efficient) way of loading jobs at startup--should help by 2 orders of
magnitude!
f - changed TORQUE_MAXCONNECTTIMEOUT to be a global variable that is now changed by
the MOM to be smaller than the pbs_server and is also
configurable on the MOM ($max_conn_timeout_micro_sec)
e - change so queued jobs that get deleted go to complete and get displayed in qstat based
on keep_completed
b - Changes to improve the qstat -x XML output and documentation
b - Change so BATCH_PARTITION_ID does not pass through to child jobs
c - fix to prevent segfault on pbs_server -t cold
b - fix so find_resc_entry still works after setting server extra_resc
c - keep pbs_server from trying to free empty attrlist after recieving bad request (Michael
Meier, University of Erlangen-Nurnberg) (merged from 2.3.8)
f - new fifo scheduler config option. ignore_queue: queue_name allows the scheduler to be
instructed to ignore up to 16 queues on the server (Simon Toth, CESNET z.s.p.o.)
e - add administrator customizable email notifications (see manpage for
pbs_server_attributes) - (Roland Haas, Georgia Tech)
e - moving jobs can now trigger a scheduling iteration (merged from 2.3.8)
e - created a utility module that is shared between both server and MOM but does NOT get
placed in the libtorque library
e - allow the user to request a specific processor geometry for their job using a bitmap, and
then bind their jobs to those processors using cpusets.
b - fix how qsub sets PBS_O_HOST and PBS_SERVER (Eirikur Hjartarson, deCODE genetics)
(merged from 2.3.8)
b - fix to prevent some jobs from getting deleted on startup.
f - add qpool.gz to contrib directory
e - improve how error constants and text messages are represented (Simon Toth, CESNET
z.s.p.o)
f - new boolean queue attribute "is_transit" that allows jobs to exceede server resource
limits (queue limits are respected). This allows routing queues to route jobs that would be
rejected for exceeding local resources even when the job won't be run locally. (Simon Toth,
CESNET z.s.p.o)

e - add support for "job_array" as a type for queue disallowed_types attribute
e - added pbs_mom config option ignmem to ignore mem/pmem limit enforcement
e - added pbs_mom config option igncput to ignore pcput limit enforcement

2.4.0
f - added a "-q" option to pbs_mom which does *not* perform the default -p behavior
e - made "pbs_mom -p" the default option when starting pbs_mom
e - added -q to qalter to allow quicker response to modify requests
f - added basic qhold support for job arrays
b - clear out ji_destin in obit_reply
f - add qchkpt command
e - renamed job.h to pbs_job.h
b - fix logic error in checkpoint interval test
f - add RERUNNABLEBYDEFAULT parameter to torque.cfg. allows admin to change the
default value of the job rerunnable attribute from true to false
e - added preliminary Comprehensive System Accounting (CSA) functionality for Linux.
Configure option --enable-csa will cause workload management records to be written if CSA
is installed and wkmg is turned on.
b - changes to allow post_checkpoint() to run when checkpoint is completed, not when it
has just started. Also corrected issue when checkpoint fails while trying to put job on hold.
b - update server immediately with changed checkpoint name and time attributes after
successful checkpoint.
e - Changes so checkpoint jobs failing after restarted are put on hold or requeued
e - Added checkpoint_restart_status job attribute used for restart status
b - Updated manpages for qsub and qterm to reflect changed checkpointing options.
b - reject a qchkpt request if checkpointing is not enabled for the job
b - Mom should not send checkpoint name and time to server unless checkpoint was
successful
b - fix so that running jobs that have a hold type and that fail on checkpoint restart get
deleted when qdel is used
b - fix so we reset start_time, if needed, when restarting a checkpointed job
f - added experimental fault_tolerant job attribute (set to true by passing -f to qsub) this
attribute indicates that a job can survive the loss of a sister MOM also added corresponding
fault_tolerant and fault_intolerant types to the "disallowed_types" queue attribute
b - fixes for pbs_moms updating of comment and checkpoint name and time
e - change so we can reject hold requests on running jobs that do not have checkpoint
enabled if system was configured with --enable-blcr
e - change to qsub so only the host name can be specified on the -e/-o options
e - added -w option to qsub that allows setting of PBS_O_WORKDIR

TORQUE 2.3

2.3.12 - This is the last offical release of TORQUE 2.3.
b - Applied patch submitted for bug 61. pbs_mom changing /dev/null mode and perms

2.3.11
b - no longer ignoring fread return values in Linux cpuset code (gcc 4.3.3)
b - fixed segfault for when TORQUE thinks there's a nanny but there isn't
b - Bugzilla bug 57. Check return value of malloc for tracejob for Linux (Chris Samuel -
Univ. of Melbourne)
b - fix so "gres" config gets displayed by pbsnodes
b - Bugzilla bug 55. Check return value of malloc for pbs_mom for Linux (Chris Samuel -
Univ. of Melbourne)
b - no longer consider -t and -T the same in qsub
c - very rare read of a potentially NULL pointer

b - properly escape characters (&"'<>) in XML output) b - ignore port when checking host in
svr_get_privilege()

2.3.10
b - Fixed a bug in run_pelog (src/resmom/prolog.c) where epilogue.user was given the
argument list for prologue scripts and not epilogue scripts. Ticket 6296.
b - Fixed pbs_mom's default restart behavior. On a restart the MOM is suppose to terminate
jobs that were in a running state while the MOM was up and report them to the batch
server where the job will be reset to a queued state. But it should not try and kill any of the
running processes that were associated with the job. Prior to this fix the MOM would try and
kill running processes associated with any running jobs.
n - 01/15/2010 snapshot torque-2.3.10-snap.201001151340.tar.gz created.
b - Made changes to source files and configure.ac to enable TORQUE to compile on Solaris5
platform with gcc-warnings enabled. Currently TORQUE must be compiled with the --
disable-gui option because X11 support on Solaris is not working with the current TORQUE
build scripts.
e - added qmgr server attribute job_start_timeout, specifies timeout to be used for sending
job to mom. If not set, tcp_timeout is used.
n - 2.3.10 released on 02/02/10 (Groundhog Day!

2.3.9
b - Made a fix to svr_get_privilege(). On some architectures a non-root user name would be
set to null after the line " host_no_port[num_host_chars] = 0;" because num_host_chars
was = 1024 which was the size of hot_no_port. The null termination needed to happen at
1023. There were other problems with this function so code was added to validate the
incoming variables before they were used. The symptom of this bug was that non-root
managers and operators could not perform operations where they should have had rights.

2.3.8
c - keep pbs_server from trying to free empty attrlist after recieving bad request (Michael
Meier, University of Erlangen-Nurnberg)
e - moving jobs can now trigger a scheduling iteration
b - fix how qsub sets PBS_O_HOST and PBS_SERVER (Eirikur Hjartarson, deCODE genetics)
f - add qpool.gz to contrib directory
b - fix return value of cpuset_delete() for Linux (Chris Samuel - VPAC)
e - Set PBS_MAXUSER to 32 from 16 in order to accomodate systems that use a 32 bit user
name.(Ken Nielson Cluster Resources)
c - modified acct_job in server/accounting.c to dynamically allocate memory
to accomodate strings larger than PBS_ACCT_MAX_RCD. (Ken Nielson Cluster Resources)
e - all the user to turn off credential lifetimes so they don't have to lose iterations while
credentials are renewed.
e - added OS independent resending of failed job obits (from D Beer), also removed OS
specific CACHEOBITFAILURES code.
b - fix so after* dependencies are handled correctly for exiting / completed jobs

2.3.7
b - fixed a bug where Unix domain socket communication was failing when "--disable-
privports" was used.
e - add job exit status as 10th argument to the epilogue script
b - fix truncated output in qmgr (peter h IPSec+jan n NANCO)
b - change so set_jobexid() gets called if JOB_ATR_egroup is not set
e - pbs_mom sisters can now tolerate an explicit group ID instead of only a
valid group name. This helps TORQUE be more robust to group lookup failures.

2.3.6
e - in Linux, a pbs_mom will now "kill" a job's task, even if that task can no longer be found
in the OS processor table. This prevents jobs from getting "stuck" when the PID vanishes in
some rare cases.
e - forward-ported change from 2.1-fixes (r2581) (b - reissue job obit even if no processes
are found)
b - change back to not sending status updates until we get cluster addr message from
server, also only try to send hello when the server stream is down.
b - change pbs_server so log_file_max_size of zero behavior matches documentation
e - added periodic logging of version and loglevel to help in support
e - added pbs_mom config option ignvmem to ignore vmem/pvmem limit enforcement
b - change to correct strtoks that accidentally got changed in astyle formatting

2.3.5
e - added new init.d scripts for Debian/Ubuntu systems
b - fixed regression in 2.3.4 release which incorrectly changed soname for libtorque
b - fixed a bug where TORQUE's exponential backoff for sending messages to the MOM could
overflow

2.3.4
b - fixed a bug with RPM spec files due to new pbs_track executable
b - fixed a bug with "max_report" where jobs not in the Q state were not always being
reported to scheduler
b - fixed bug with new Unix socket communication when more than one TORQUE instance is
running on the same host
c - fixed a few memory errors due to a spurious comma and some uninitialized memory
being allocated
b - fixed a bug preventing multiple TORQUE servers and TORQUE MOMs from operating
properly all from the same host
f - enabled 'qsub -T' to specify "job type." Currently this will allow a per job prolog/epilog
f - added a new '-E' option to qstat which allows command-line users to pass "extend"
strings via the API
f - added new max_report queue attribute which will limit the number of Idle jobs, per
queue, that TORQUE reports to the scheduler
e - enhanced logging when a hostname cannot be looked up in DNS
e - PBS_NET_MAX_CONNECTIONS can now be defined at compile time (via CFLAGS)
e - modified source code so that all .c and .h files now conform more closely to the new CRI
format style
c - fixed segfault when loading job files of an older/incompatible version
b - fixed a bug where if attempt to send job to a pbs_mom failed due to timeout, the job
would indefinitely remain the in 'R' state
b - fixed a bug where CPU time was not being added up properly in all cases (fix for Linux
only)
e - pbs_track now allows passing of - and -- options to the a.out argument
b - qsub now properly interprets -W umask=0XXX as octal umask
e - allow $HOME to be specified for path

e - added --disable-qsub-keep-override to allow the qsub -k flag to not override -o -e.
e - updated with security patches for setuid, setgid, setgroups
b - fixed correct_ct() in svr_jobfunc.c so we don't crash if we hit COMPLETED job
b - fixed problem where momctl -d 0 showed ConfigVersion twice
e - if a .JB file gets upgraded pbs_server will back up the original
b - removed qhold / qrls -h n option since there is no code to support it
b - set job state and substate correctly when job has a hold attribute and is being rerun
e - fixed several compiler error and warnings for AIX 5.2 systems

2.3.3
b - fixed bug where pbs_mom would sometimes not connect properly with pbs_server after
network failures
b - changed so run_pelog opens correct stdout/stderr when join is used
b - corrected pbs_server man page for SIGUSR1 and SIGUSR2
f - added new pbs_track command which may be used to launch an external process and a
pbs_mom will then track the resource usage of that process and attach it to a specified job
(experimental) (special thanks to David Singleton and David Houlder from APAC)
e - added alternate method for sending cluster addresses to MOM (ALT_CLSTR_ADDR)

2.3.2
e - added --disable-posixmemlock to force MOM not to use POSIX MEMLOCK.
b - fix potential buffer overrun in qsub
b - keep pbs_mom, pbs_server, pbs_sched from closing sockets opened by nss_ldap (SGI)
e - added PBS_VERSION environment variable
e - added --enable-acct-x to allow adding of x attributes to accounting log
b - fix net_server.h build error
b - fixed code that was causing jobs to fail due to "neednodes" errors when Moab/Maui was
the scheduler

2.3.1
b - fixed a bug where torque would fail to start if there was no LF in nodes file
b - fixed a bug where TORQUE would ignore the "pbs_asyrunjob" API extension string when
starting jobs in asynchronous mode
b - fixed memory leak in free_br for PBS_BATCH_MvJobFile case
e - torque can now compile on Linux and OS X with NDEBUG defined
f - when using qsub it is now possible to specify both -k and -o/-e (before -o/-e did not
behave as expected if -k was also used)
e - changed pbs_server to have "-l" option. Specifies a host/port that event messages will
be sent to. Event messages are the same as what the scheduler currently receives.
e - added --enable-autorun to allow qsub jobs to automatically try to run if there are any
nodes available.
e - added --enable-quickcommit to allow qsub to combine the ready to commit and commit
phases into 1 network transmission.
e - added --enable-nochildsignal to allow pbs_server to use inline checking for SIGCHLD
instead of using the signal handler.
e - change qsub so '-v var=' will look in environment for value. If value is not found set it
to "".
b - fixed mom_server code's HELLO initiation retry control to reduce occurrence of
pbs_server incorrectly marking node as unknown/down
b - fix qdel of entire job arrays for non operator/managers
b - fix so we continue to process exiting jobs for other servers
e - added source_login_batch and source_login_interactive to MOM config. This allows us to
bypass the sourcing of /etc/profile, etc. type files.
b - fixed pbs_server segmentation fault when job_array submissions are rejected before
ji_arraystruct was initialized
e - add some casts to fix some compiler warnings with gcc-4.1 on i386 when -
D_FILE_OFFSET_BITS=64 is set
e - added --enable-maxnotdefault to allow not using resources_max as defaults.
b - fixed file descriptor leak with Linux cpusets (VPAC)
b - added new values to TJobAttr so we don't have mismatch with job.h values. Added some
comments also.
b - reset ji_momhandle so we cannot have more than one pjob for obit_reply to find.
e - change qdel to accept 'ALL' as well as 'all'
b - changed order of searching so we find most recent jobs first. Prevents finding old
leftover job when pids rollover. Also some CACHEOBITFAILURES updates.
b - handle case where MOM replies with an unknown job error to a stat request from the
server
b - allow qalter to modify HELD jobs if BLCR is not enabled
b - change to update errpath/outpath attributes when -e -o are used with qsub
e - added string output for errnos, etc.

2.3.0
b - fixed a bug where TORQUE would ignore the "pbs_asyrunjob" API extension string when
starting jobs in asynchronous mode
e - redesign how torque.spec is built
e - added -a to qrun to allow asynchronous job start
e - allow qrerun on completed jobs
e - allow qdel to delete all jobs
e - make qdel -m functionality match the documentation
b - prevent runaway hellos being sent to server when mom's node is removed from the
server's node list
e - local client connections use a Unix domain socket, bypassing inet and pbs_iff
f - Linux 2.6 cpuset support (in development)
e - new job array submission syntax
b - fixed SIGUSR1 / SIGUSR2 to correctly change the log level

f - health check script can now be run at job start and end
e - tm tasks are now stored in a single .TK file rather than eat lots of inodes
f - new "extra_resc" server attribute
b - "pbs_version" attr is now correctly read-only
e - increase max size of .JB and .SC file names
e - new "sched_version" server attribute
f - new printserverdb tool
e - pbs_server/pbs_mom hostname arg is now -H, -h is help
e - added $umask to pbs_mom config, used for generated output files.
e - minor pbsnodes overhaul
b - fixed memory leak in pbs_server

TORQUE 2.2

2.2.0
e - improve RPP logging for corruption issues
f - dynamic resources
b - correct run-time symbol in pam module on RHEL4
f - allow manager to set "next job number" vi hidden qmgr attribute next_job_number
b - some minor hpux11 build fixes (PACCAR)
e - allow pam_pbssimpleauth to be built on OSX and Solaris
b - fix bug with log roll and automatic log filenames
e - use mlockall() in pbs_mom if _POSIX_MEMLOCK
f - consumable resource "tokens" support (Harte-Hanks)
b - networking fixes for HPUX, fixes pbs_iff (PACCAR)
e - fix "list_head" symbol clash on Solaris 10
f - Linux 2.6 cpuset support
b - compile error with size_fs() on digitalunix
e - build process sets default submit filter path to ${libexecdir}/qsub_filter

- we fall back to /usr/local/sbin/torque_submitfilter to maintain compatibility
e - allow long job names when not using -N
e - pbs_server will now print build details with --about

TORQUE 2.1

2.1.2
b - fix momctl queries with multiple hosts
b - don't fail make install if --without-sched
b - correct MOM compile error with atol()
f - qsub will now retry connecting to pbs_server (see manpage)
f - X11 forwarding for single-node, interactive jobs with qsub -X

f - new pam_pbssimpleauth PAM module, requires --with-pam=DIR
e - add logging for node state adjustment
f - correctly track node state and allocation based for suspended jobs
e - entries can always be deleted from manager ACL, even if ACL contains host(s) that no
longer exist
e - more informative error message when modifying manager ACL
f - all queue create, set, and unset operations now set a queue mtime
f - added support for log rolling to libtorque
f - pbs_server and pbs_mom have two new attributes log_file_max_size, log_file_roll_depth
e - support installing client libs and cmds on unsupported OSes (like cygwin)
b - fix subnode allocation with pbs_sched
b - fix node allocation with suspend-resume
b - fix stale job-exclusive state when restarting pbs_server
b - don't fall over when duplicate subnodes are assigned after suspend-resume
b - handle suspended jobs correctly when restarting pbs_server
b - allow long host lists in runjob request
b - fix truncated XML output in qstat and pbsnodes
b - typo broke compile on irix6array and unicos8
e - momctl now skips down nodes when selecting by property
f - added submit_args job attribute

2.1.1
c - fix mom_sync_job code that crashes pbs_server (USC)
b - checking disk space in $PBS_SERVER_HOME was mistakenly disabled (USC)
e - node's np now accessible in qmgr (USC)
f - add ":ALL" as a special node selection when stat'ing nodes (USC)
f - momctl can now use :property node selection (USC)
f - send cluster addrs to all nodes when a node is created in qmgr (USC)

- new nodes are marked offline
- all nodes get new cluster ipaddr list
- new nodes are cleared of offline bit

f - set a node's np from the status' ncpus (only if ncpus > np) (USC)
- controlled by new server attribute "auto_node_np"

c - fix possible pbs_server crash when nodes are deleted in qmgr (USC)
e - avoid dup streams with nodes for quicker pbs_server startup (USC)
b - configure program prefix/suffix will now work correctly (USC)
b - handle shared libs in tpackages (USC)
f - qstat's -1 option can now be used with -f for easier parsing (USC)
b - fix broken TM on OSX (USC)
f - add "version" and "configversion" RM requests (USC)
b - in pbs-config --libs, don't print rpath if libdir is in the sys dlsearch path (USC)
e - don't reject job submits if nodes are temporarily down (USC)
e - if MOM can't resolve $pbsserver at startup, try again later (USC)

- $pbsclient still suffers this problem
c - fix nd_addrs usage in bad_node_warning() after deleting nodes (MSIC)
b - enable build of xpbsmom on darwin systems (JAX)
e - run-time config of MOM's rcp cmd (see pbs_mom(8)) (USC)
e - momctl can now accept query strings with spaces, multiple -q opts (USC)
b - fix linking order for single-pass linkers like IRIX (ncifcrf)
b - fix MOM compile on solaris with statfs (USC)

b - memory corruption on job exit causing cpu0 to be allocated more than once (USC)
e - add increased verbosity to tracejob and added '-q' commandline option
e - support larger values in qstat output (might break scripts!) (USC)
e - make qterm server shutdown faster (USC)

2.1.0p0
fixed job tracking with SMP job suspend/resume (MSIC)
modify pbs_mom to enforce memory limits for serial jobs (GaTech)
- Linux only
enable 'never' qmgr maildomain value to disable user mail
enable qsub reporting of job rejection reason
add suspend/resume diagnostics and logging
prevent stale job handler from destroying suspended jobs
prevent rapid hello from MOM from doing DOS on pbs_server
add diagnostics for why node not considered available
add caching of local serverhost addr lookup
enable job centric vs queue centric queue limit parameter
brand new autoconf+automake+libtool build system (USC)
automatic MOM restarts for easier upgrades (USC)
new server attributes: acl_group_sloppy, acl_logic_or, keep_completed, kill_delay
new server attributes: server_name, allow_node_submit, submit_hosts
torque.cfg no longer used by pbs_server
pbsdsh and TM enhancements (USC)
- tm_spawn() returns an error if execution fails
- capture TM stdout with -o
- run on unique nodes with -u
- run on a given hostname with -h

largefile support in staging code and when removing $TMPDIR (USC)
use bindresvport() instead of looping over calls to bind() (USC)
fix qsub "out of memory" for large resource requests (SANDIA)
pbsnodes default arg is now '-a' (USC)
new ":property" node selection when node stat and manager set (pbsnodes) (USC)
fix race with new jobs reporting wrong walltime (USC)
sister moms weren't setting job state to "running" (USC)
don't reject jobs if requested nodes is too large node_pack=T (USC)
add epilogue.parallel and epilogue.user.parallel (SARA)
add $PBS_NODENUM, $PBS_MSHOST, and $PBS_NODEFILE to pelogs (USC)
add more flexible --with-rcp='scp|rcp|mom_rcp' instead of --with-scp (USC)
build/install a single libtorque.so (USC)
nodes are no longer checked against server host acl list (USC)
Tcl's buildindex now supports a 3rd arg for "destdir" to aid fakeroot installs (USC)
fixed dynamic node destroy qmgr option
install rm.h (USC)
printjob now prints saved TM info (USC)
make MOM restarts with running jobs more reliable (USC)
fix return check in pbs_rescquery fixing segfault in pbs_sched (USC)
add README.pbstools to contrib directory
workaround buggy recvfrom() in Tru64 (USC)
attempt to handle socklen_t portably (USC)
fix infinite loop in is_stat_get() triggered by network congestion (USC)
job suspend/resume enhancements (see qsig manpage) (USC)
support higher file descriptors in TM by using poll() instead of select() (USC)
immediate job delete feedback to interactive queued jobs (USC)
move qmgr manpage from section 8 to section 1
add SuSE initscripts to contrib/init.d/
fix ctrl-c race while starting interactive jobs (USC)
fix memory corruption when tm_spawn() is interrupted (USC)

TORQUE 2.0

2.0.0p6

fix segfault in new "acl_group_sloppy" code if a group doesn't exist (USC)
configure defaults changed to enable syslog, enable docs, and disable filesync (USC)
pelog now correctly restores previous alarm handler (Sandia)
misc fixes with syscalls returns, sign-mismatches, and mem corruption (USC)
prevent MOM from killing herself on new job race condition - Linux only (USC)
remove job delete nanny earlier to not interrupt long stageouts (USC)
display C state later when using keep_completed (USC)
add 'printtracking' command in src/tools (USC)
stop overriding the user with name resolution on qsub's -o/-e args (USC)

2.0.0p5
reorganize ji_newt structure to eliminate 64 bit data packing issues
enable '--disable-spool' configure directive
enable stdout/stderr stageout to search through $HOME and $HOME/.pbs_spool
fixes to qsub's env handling for newlines and commas (UMU)
fixes to at_arst encoding and decoding for newlines and commas (USC)
use -p with rcp/scp (USC)
several fixes around .pbs_spool usage (USC)
don't create "kept" stdout/err files ugo+rw (avoid insane umask) (USC)
qsub -V shouldn't clobber qsub's environ (USC)
don't prevent connects to "down" nodes that are still talking (USC)
allow file globs to work correctly under --enable-wordexp (USC)
enable secondary group checking when evaluating queue acl_group attribute
- enable the new queue parameter "acl_group_sloppy"
sol10 build system fixes (USC)
fixed node manager buffer overflow (UMU)
fix "pbs_version" server attribute (USC)
torque.spec updates (USC)
remove the leading space on the node session attribute on darwin (USC)
prevent SEGV if config file is missing/corrupt
"keep_completed" execution queue attribute
several misc code fixes (UMU)

2.0.0p4
fix up socklen_t issues
fixed epilog to report total job resource utilization
improved RPM spec (USC)
modified qterm to drop hung connections to bad nodes
enhance HPUX operation

2.0.0p3
fixed dynamic gres loading in pbs_mom (CRI)
added torque.spec (rpmbuild -tb should work) (USC)
new 'packages' make target (see INSTALL) (USC)
added '-1' qstat option to display node info (UMICH)
various fixes in file staging and copying (USC)
- reenable stageout of directories
- fix confusing email messages on failed stageout
- child processes can't use MOM's logging, must use syslog
fix overflow in RM netload (USC)
don't check walltime on sister nodes, only on MS (ANU)
kill_task wasn't being declared properly for all mach types (USC)

don't unnecessarily link with libelf and libdl (USC)
fix compile warnings with qsort/bsearch on bsd/darwin (USC)
fix --disable-filesync to actually work (USC)
added prolog diagnostics to 'momctl -d' output (CRI)
added logging for job file management (CRI)
added MOM parameter $ignwalltime (CRI)
added $PBS_VNODENUM to job/TM env (USC)
fix self-referencing job deps (USC)
Use --enable-wordexp to enable variables in data staging (USC)
$PBS_HOME/server_name is now used by MOM _iff $pbsserver isn't used_ (USC)
Fix TRU64 compile issues (NCIFCRF)
Expand job limits up to ULONG_MAX (NCIFCRF)
user-supplied TMPDIR no longer treated specially (USC)
remtree() now deals with symlinks correctly (USC)
enable configurable mail domain (Sandia)
configure now handles darwin8 (USC)
configure now handles --with-scp=path and --without-scp correctly (USC)

2.0.0p2
fix check_pwd() memory leak (USC)

2.0.0p1
fix mpiexec stdout regression from 2.0.0p0 (USC)
add 'qdel -m' support to enable annotating job cancellation (CRI)
add MOM diagnostics for prolog failures and timeouts (CRI)
interactive jobs cannot be rerunable (USC)
be sure nodefile is removed when job is purged (USC)
don't run epilogue multiple times when multiple jobs exit at once (USC)
fix clearjob MOM request (momctl -c) (USC)
fix detection of local output files with localhost or /dev/null (USC)
new qstat/qselect -e option to only select jobs in exec queues (USC)
$clienthost and $headnode removed, $pbsclient and $pbsserver added (USC)
$PBS_HOME/server_name is now added to MOM's server list (USC)
resmom transient TMPDIR (USC)
add joblist to MOM's status and add server "mom_job_sync" (USC)
export PBS_SCHED_HINT to pelogues if set in the job (USC)
don't build or install pbs_rcp if --enable-scp (USC)
set user hold on submitted jobs with invalid deps (USC)
add initial multi-server support for HA (CRI)
Altix cpuset enhancements (CSIRO)
enhanced momctl to diagnose and report on connectivity issues (CRI)
added hostname resolution diagnostics and logging (CRI)

fixed 'first node down' rpp failure (USC)
improved qsub response time

2.0.0p0
torque patches for RCP and resmom (UCHSC)
enhanced DIS logging
improved start-up to support quick startup with down nodes
fixed corrupt job/node/queue API reporting
fixed tracejob for large jobs (Sandia)
changed qdel to only send one SIGTERM at MOM level
fixed doc build by adding AIX 5 resources docs
added prerun timeout change (RENTEC)
added code to handle select() EBADF - 9
disabled MOM quota feature by default, enabled with -DTENABLEQUOTA
cleanup MOM child error messages (USC)
fix makedepend-sh for gcc-3.4 and higher (DTU)
don't fallback to mom_rcp if configured to use scp (USC)

TORQUE 1.2

1.2.0p6
enabled arch MOM config (CRI)
fixed qrun based default scheduling to ignore down nodes (USC)
disable unsetting of key/integer server parameters (USC)
allow FC4 support - quota struct fix (USC)
add fix for out of memory failure (USC)
add file recovery failure messages (USC)
add direct support for external scheduler extensions
add passwd file corruption check
add job cancel nanny patch (USC)
recursively remove job dependencies if children can never be satisfied (USC)
make poll_jobs the default behavior with a restat time of 45 seconds
added 'shell-use-arg' patch (OSC)
improved API timeout disconnect feature

added improved rapid start up
reworked mom-server state management (USC)
- removed 'unknown' state
- improved pbsnodes 'offline' management
- fixed 'momctl -C' which actually _prevented_ an update
- fixed incorrect math on 'tmpTime'
- added 'polltime' to the math on 'tmpTime'
- consolidated node state changes to new 'update_node_state()'
- tightened up the "node state machine"
- changed mom's state to follow the documented state guidelines
- correctly handle "down" from mom
- moved server stream handling out of 'is_update_stat()' to new
'init_server_stream()'
- refactored the top of the main loop to tighten up state changes
- fixed interval counting on the health check script
- forced health check script if update state is forced
- don't spam the server with updates on startup
- required new addr list after connections are dropped
- removed duplicate state updates because of broken multi-server support
- send "down" if internal_state is down (aix's query_adp() can do this)
- removed ferror() check on fread() because fread() randomly fails on initial
MOM startup.
- send "down" if health check returns "ERROR"
- send "down" if disk space check fails.

1.2.0p5
make '-t quick' default behavior for qterm
added '-p' flag to qdel to enable forced job purge (USC)
fixed server resources_available n-1 issue
added further Altix CPUSet support (NCSA)
added local checkpoint script support for Linux
fixed 'premature end of message warning'
clarify job deleted mail message (SDSC)
fixed AIX 5.3 support in configure (WestGrid)
fixed crash when qrun issued on job with incomplete requeue
added support for >= 4GB memory usage (GMX)
log job execution limits failures
added more detailed error messages for missing user shell on mom
fixed qsub env overflow issue

1.2.0p4
extended job prolog to include jobname, resource, queue, and account info (MAINE)
added support for Darwin 8/OS X 10.4 (MAINE)
fixed suspend/resume for MPI jobs (NORWAY)
added support for epilog.precancel to enable local job cancellation handling
fixed build for case insensitive filesystems
fixed relative path based Makefiles for xpbsmom
added support for gcc 4.0
added PBSDEBUG support to client commands to allow more verbose diagnostics of client
failures
added ALLOWCOMPUTEHOSTSUBMIT option to torque.cfg
fixed dynamic pbs_server loglevel support
added mom-server rpp socket diagnostics
added support for multi-homed hosts w/SERVERHOST parameter in torque.cfg
added support for static linking w/PBSBINDIR
added availmem/totmem support to Darwin systems (MAINE)
added netload support to Darwin systems (MAINE)

1.2.0p3
enable multiple server to MOM communication
fixed node reject message overwrite issue
enable pre-start node health check (BOEING)
fixed pid scanning for RHEL3 (VPAC)
added improved vmem/mem limit enforcement and reporting (UMU)
added submit filter return code processing to qsub

1.2.0p2
enhance network failure messages
fixed tracejob tool to only match correct jobs (WESTGRID)
modified reporting of Linux availmem and totmem to allow larger file sizes
fixed pbs_demux for OSF/TRU64 systems to stop orphaned demux processes
added dynamic pbs_server loglevel specification
added intelligent MOM job stat sync'ing for improved scalability (USC/CRI)
added MOM state sync patch for dup join (USC)
added spool dir space check (MAINE)

1.2.0p1
add default DEFAULTMAILDOMAIN configure option
improve configure options to use pbs environment (USC)
use openpty() based tty management by default
enable default resource manager extensions
make MOM config parameters case insensitive
added jobstartblocktime MOM parameter
added bulk read in pbs_disconnect() (USC)
added support for solaris 5
added support for program args in pbsdsh (USC)
added improved task recovery (USC)

1.2.0p0
fixed MOM state update behavior (USC/Poland)
fixed set_globid() crash
added support for > 2GB file size job requirements

updated config.guess to 2003 release
general patch to initialize all function variables (USC)
added patch for serial job TJE leakage (USC)
add "hw.memsize" based physmem MOM query for darwin (Maine)
add configure option (--disable-filesync) to speed up job submission
set PBS mail precedence to bulk to avoid vactaion responses (VPAC)
added multiple changes to address gcc warnings (USC)
enabled auto-sizing of 'qstat -Q' columns
purge DOS EOL characters from submit scripts

TORQUE 1.1

1.1.0p6
added failure logging for various MOM job launch failures (USC)
allow qsub '-d' relative path qsub specification
enabled $restricted parameter w/in FIFO to allow used of non-privileged ports (SAIC)
checked job launch status code for retry decisions
added nodect resource_available checking to FIFO
disabled client port binding by default for darwin systems (use --enable-darwinbind to re-
enable)
- workaround for darwin bind and pclose OS bugs
fixed interactive job terminal control for MAC (NCIFCRF)
added support for MAC MOM-level cpu usage tracking (Maine)
fixed __P warning (USC)
added support for server level resources_avail override of job nodect limits (VPAC)
modify MOM copy files and delete file requests to handle NFS root issues (USC/CRI)
enhance port retry code to support mac socket behavior
clean up file/socket descriptors before execing prolog/epilog
enable dynamic cpu set management (ORNL)
enable array services support for memory management (ORNL)
add server command logging to diagnostics
fix Linux setrlimit persistance on failures

1.1.0p5
added loglevel as MOM config parameter
distributed job start sequence into multiple routines
force node state/subnode state offline stat synchronization (NCSA)
fixed N-1 cpu allocation issue (no sanity checking in set_nodes)
enhance job start failure logging
added continued port checking if connect fails (rentec)
added case insensitive host authentication checks
added support for submitfilter command line args
added support for relocatable submitfilter via torque.cfg
fixed offline status cleared when server restarted (USC)
updated PBSTop to 4.05 (USC)
fixed PServiceType array to correctly report service messages
fixed pbs_server crash from job dependencies
prevent MOM from truncating lock file when MOM is already running
tcp timeout added as config option

1.1.0p4
added 15004 error logging
added use of openpty() call for locating pseudo terminals (SNL)
add diagnostic reporting of config and executable version info
add support for config push
add support for MOM config version parameters
log node offline/online and up/down state changes in pbs_server logs
add MOM fork logging and home directory check
add timeout checking in rpp socket handling
added buffer overflow prevention routines
added lockfile logging
supported protected env variables with qstat

1.1.0p3
added support for node specification w/pbsnodes -a
added hstfile support to momctl
added chroot (-D) support (SRCE)
added MOM chdir pjob check (SRCE)
fixed MOM HELLO initialization procedure
added momctl diagnostic/admin command (shutdown, reconfig, query, diagnose)
added MOM job abort bailout to prevent infinite loops
added network reinitialization when socket failure detected
added mom-to-scheduler reporting when existing job detected
added MOM state machine failure logging

1.1.0p2
add support for disk size reporting via pbs_mom
fixed netload initialization
fixed orphans on MOM fork failure
updated to pbstop v 3.9 (USC)
fixed buffer overflow issue in net_server.c
added pestat package to contrib (ANU)
added parameter checking to cpy_stage() (NCSA)
added -x (xml output) support for 'qstat -f' and 'pbsnodes -a'
added SSS xml library (SSS)
updated user-project mapping enforcement (ANL)
fix bogus 'cannot find submitfilter' message for interactive jobs
fix incorrect job allocation issue for interactive jobs (NCSA)
prevent failure with invalid 'servername' specification (NCSA)
provide more meaningful 'post processing error' messages (NCSA)
check for corrupt jobs in server database and remove them immediately
enable SIGUSR1/SIGUSR2 pbs_mom dynamic loglevel adjustment
profiling enhancements
use local directory variable in scan_non_child_tasks() to prevent race condition (VPAC)
added AIX 5 odm support for realmem reporting (VPAC)

1.1.0p1
added pbstop to contrib (USC)
added OSC mpiexec patch (OSC)
confirmed OSC mom-restart patch (OSC)
fix pbsd_init purge job tracking
allow tracking of completed jobs (w/TORQUEKEEPCOMPLETED env)
added support for MAC OS 10

added qsub wrapper support
added '-d' qsub command line flag for specifying working directory
fixed numerous spelling issues in pbs docs
enable logical or'ing of user and group ACL's
allow large memory sizes for physmem under solaris (USC)
fixed qsub SEGV on bad '-o' specification
add null checking on ap->value
fixed physmem() routine for tru64 systems to load compute node physical memory
added netload tracking

1.1.0p0
fixed Linux swap space checking
fixed AIX5 resmom ODM memory leak
handle split var/etc directories for default server check (CHPC)
add pbs_check utility
added TERAGRID nospool log bounds checking
add code to force host domains to lower case
verified integration of OSC prologue-environment.patch (export Resource_List.nodes in an
environment variable for prologue)
verified integration of OSC no-munge-server-name.patch (do not install over existing
server_name)
verified integration of OSC docfix.patch (fix minor manpage type)

TORQUE 1.0

1.0.1p6
add messaging to report remote data staging failures to pbs_server
added tcp_timeout server parameter
add routine to mark hung nodes as down
add torque.setup initialization script
track okclient status
fixed INDIANA ji_grpcache MOM crash
fixed pbs_mom PBSLOGLEVEL/PBSDEBUG support
fixed pbs_mom usage
added rentec patch to MOM 'sessions' output
fixed pbs_server --help option
added OSC patch to allow jobs to survive MOM shutdown
added patch to support server level node comments
added support for reporting of node static resources via sss interface
added support for tracking available physical memory for IRIX/Linux systems
added support for per node probes to dynamically report local state of arbitrary value
fixed qsub -c (checkpoint) usage

1.0.1p5
add SuSE 9.0 support
add Linux 2.4 meminfo support
add support for inline comments in mom_priv/conf

allow support for upto 100 million unique jobs
add pbs_resources_all documentation
fix kill_task references
add contrib/pam_authuser

1.0.1p4
fixed multi-line readline buffer overflow
extended TORQUE documentation
fixed node health check management

1.0.1p3
added support for pbs_server health check and routing to scheduler
added support for specification of more than one clienthost parameter
added PW unused-tcp-interrupt patch
added PW mom-file-descriptor-leak patch
added PW prologue-bounce patch
added PW mlockall patch (release mlock for MOM children)
added support for job names up to 256 chars in length
added PW errno-fix patch

1.0.1p2
added support for macintosh (darwin)
fixed qsub 'usage' message to correctly represent '-j',
'-k', '-m', and '-q' support
add support for 'PBSAPITIMEOUT' env variable
fixed MOM dec/hp/linux physmem probes to support 64 bit
fixed MOM dec/hp/linux availmem probes to support 64 bit
fixed MOM dec/hp/linux totmem probes to support 64 bit
fixed MOM dec/hp/linux disk_fs probes to support 64 bit
removed pbs server request to bogus probe
added support for node 'message' attribute to report internal
failures to server/scheduler
corrected potential buffer overflow situations
improved logging replacing 'unknown' error with real error message
enlarged internal tcp message buffer to support 2000 proc systems
fixed enc_attr return code checking

1.0.1p1
NOTE: See TORQUE distribution CHANGELOG file

1.0.1p0
NOTE: See TORQUE distribution CHANGELOG file

See Also

TORQUE Installation TroubleShooting

	TORQUE Administrator's Guide version 3.0.2

	Change Log

	Table of Contents

	Legal Notices
	TORQUE Administrator Guide Overview
	Introduction
	Glossary
	1.1 TORQUE Installation
	1.2 Initialize/Configure TORQUE
	1.3 Advanced Configuration
	1.4 Manual Setup of Initial Server Configuration
	1.5 Server Node File Configuration
	1.6 Testing Server Configuration
	1.7 TORQUE on NUMA Systems
	1.8 TORQUE Multi-MOM
	2.1 Job Submission
	2.2 Monitoring Jobs
	2.3 Canceling Jobs
	2.4 Job Preemption
	2.5 Keeping Completed Jobs
	2.6 Job Checkpoint and Restart
	2.7 Job Exit Status
	2.8 Service Jobs
	3.1 Adding Nodes
	3.2 Nodes Properties
	3.3 Changing Node State
	3.4 Host Security
	3.5 Linux Cpuset Support
	3.6 Scheduling Cores
	3.7 Scheduling GPUs
	4.1 Queue Configuration
	4.2 Server High Availability
	5.1 Integrating Schedulers for TORQUE
	6.1 SCP Setup
	6.2 NFS and Other Networked Filesystems
	6.3 File Stage-In/Stage-Out
	7.1 MPI (Message Passing Interface) Support
	8.1 Monitoring Resources
	9.1 Accounting Records
	10.1 Job Logging
	11.1 Troubleshooting
	11.2 Compute Node Health Check
	11.3 Debugging
	Appendix A: Commands Overview
	momctl
	pbsdsh

	pbsnodes
	qalter
	qchkpt
	qdel
	qgpumode

	qgpureset

	qhold
	qmgr
	qrerun
	qrls
	qrun
	qsig
	qstat
	qsub
	qterm
	pbs_mom
	pbs_server
	pbs_track

	Appendix B: Server Parameters
	Appendix C: Node Manager (MOM) Configuration
	Appendix D: Error Codes and Diagnostics
	Appendix E: Considerations Before Upgrading
	Appendix F: Large Clusters Considerations
	Appendix G: Prologue & Epilogue Scripts
	Appendix H: Running Multiple TORQUE Servers and Moms On the Same Node
	Appendix I: Security Overview
	Appendix J: Job Submission Filter (aka 'qsub Wrapper')
	Appendix K: torque.cfg File
	Appendix L: TORQUE Quick Start Guide
	Change Log

